

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
	GEOGRAPHY			0460/43
9 8 2	Paper 4 Alternati	ve to Coursework		May/June 2013 1 hour 30 minutes
00	Candidates answ	er on the Question Paper.		
	Additional Materi	als: Calculator Ruler		
	READ THESE IN	STRUCTIONS FIRST		

Write your Centre number, candidate number and name in the spaces provided. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions.

The Insert contains Fig. 1 and Table 5 for Question 1, and Photographs A and B and Table 9 for Question 2. The Insert is **not** required by the Examiner. Sketch maps and diagrams should be drawn whenever they serve to illustrate an answer.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Q1				
Q2				
Total				

This document consists of 13 printed pages, 3 blank pages and 1 Insert.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

1 A class of students were studying traffic flow at a busy road junction near their school. A sketch map of the road junction is shown in Fig. 1 (Insert).

The students wanted to investigate the following hypotheses:

Hypothesis 1: Traffic flow changes during the day.

Hypothesis 2: Traffic congestion occurs at all sites going towards and away from the road junction.

The students chose eight sites to do traffic surveys. These are shown on Fig. 1.

They agreed to do four separate counts lasting one hour at the following times:

08.00 to 09.00 11.00 to 12.00 14.00 to 15.00 17.00 to 18.00

(a) (i) Describe how the students would organise the traffic survey. Refer to their planning and recording.

	[4]	
		•
(ii)	Suggest three difficulties which the students might have had when doing their traffic survey.	ſ
(ii)	Suggest three difficulties which the students might have had when doing their	ſ
(ii)	Suggest three difficulties which the students might have had when doing their traffic survey.	r
(ii)	Suggest three difficulties which the students might have had when doing their traffic survey.	r
(ii)	Suggest three difficulties which the students might have had when doing their traffic survey.	r
(ii)	Suggest three difficulties which the students might have had when doing their traffic survey. 1	r

For Examiner's Use (b) The results of the students' traffic survey at site 3 are shown in Table 1, below.

Table 1

Traffic survey results for site 3

Time of survey	bikes / motor bikes	cars	vans / minibuses	lorries / buses	Total vehicles
08.00 to 09.00	8	101	38	13	160
11.00 to 12.00	6	107	27	18	
14.00 to 15.00	4	73	29	20	126
17.00 to 18.00	2	41	22	10	75

- (i) Complete Table 1 by calculating the total number of vehicles counted between 11.00 and 12.00. [1]
- (ii) Use the data in Table 1 to complete the divided bar graph for the traffic survey results between 11.00 and 12.00 on Fig. 2 below. [2]

Results of student traffic survey

[Turn over www.theallpapers.com

For Examiner's Use

(iii)	Which one of the following types of graph would also be suitable to show the traffic survey results between 11.00 and 12.00?					
	Circle you	ır answer below.				Use
		pie chart	line graph	scatter graph	[1]	
(iv)		nclusion would th ages during the da		3 make about Hypothesi	s 1: Traffic	
	Support y	our decision with	evidence from Tab	ble 1 and Fig. 2.		
(v)				09.00 might be different at Look at Fig. 1 (Insert) to I		
	Number c	of vehicles				
	Type of ve	ehicles				
					[2]	

(c) To test **Hypothesis 2:** *Traffic congestion occurs at all sites going towards and away from the road junction*, the students used their results to calculate an index of traffic flow for each site. The index is shown in Table 2 below.

For Examiner's Use

Table 2

Index of traffic flow

vehicle type	number of points allocated*
bike / motor bike	0.5
car	1.0
van / minibus	2.0
lorry / bus	3.0

*more points were allocated to vehicles causing more congestion

The results of using this index between 08.00 and 09.00 at site 3 are shown in Table 3 below.

Table 3

Index of traffic flow for site 3 between 08.00 and 09.00

vehicle type	bikes / motor bikes	cars	vans / minibuses	lorries / buses
number counted	8	101	38	13
points	0.5	1.0	2.0	3.0
Index score	4	101	76	39

Total index score between 08.00 and 09.00 at site 3 = 220

(i) Calculate the index scores for site 3 between 11.00 and 12.00 in Table 4 below. [2]

Table 4

Index score of traffic flow for site 3 between 11.00 and 12.00

vehicle type	bikes / motor bikes	cars	vans / minibuses	lorries / buses
number counted	6	107	27	18
points	0.5	1.0	2.0	3.0
Index score		107	54	

Total index score between 11.00 and 12.00 at site 3 = 218

- (ii) The results of the index of traffic flow for all 8 survey sites are shown in Table 5 For (Insert). Examiner's Use The students decided to show their results in a line graph, Fig. 3 below. Use the data in Table 5 to complete the line for site 1. [2] Index of traffic flow at survey sites 1700 1600 congestion 1500 level at sites 1+2 1400 (4 lane road) 1300 1200 1100 1000 index of 900 traffic 800 flow 700 600 500 400 congestion level at 300 sites 3,4,5,6 7+8 (2 lane roads) 200 100 0 -08.00-11.00 -14.00 -17.00 -09.00 12.00 15.00 18.00 survey times Key traffic going towards junction - - · traffic going away from junction
 - Fig. 3

0460/43/M/J/13

(iii) Fig. 3 shows the level above which traffic flow is classified as congested. Congestion level indicates the traffic flow index above which traffic delays occur.

For Examiner's Use

What conclusion would the students make about **Hypothesis 2:** *Traffic congestion occurs at all sites going towards and away from the road junction*? Use data from Fig. 3 to support your answer.

.....[4] (d) There is a plan to build a new shopping area at the location shown on Fig. 1 (Insert). Give two effects this development might have on traffic at sites 5 and 6. 1 2[2] (e) Suggest three ways to reduce traffic congestion in urban areas. 1 2 3[3] [Total: 30 marks]

2 Two groups of students were investigating the characteristics of a local river which flowed for 15 km from its source to the sea. They wanted to investigate possible reasons for changes in velocity (speed of flow) downstream. They carried out their fieldwork at five sites along the course of the river.

For Examiner's Use

They decided to test the following hypotheses:

Hypothesis 1: Velocity increases as the river bed slopes more steeply.

Hypothesis 2: Velocity increases as the wetted perimeter of the river channel increases.

(a) Before they began the fieldwork their teacher spoke to them about safety in and around the river. Suggest **two** pieces of advice their teacher could have given them.

(b) First the students used a floating object to measure velocity over a distance of 10 metres. The results from Group A at site 1 are shown in Fig. 4 below.

River recording sheet

Study site:1Group AMeasuring velocityTime for a floating object to travel 10 metres:
Test 148 seconds
Test 271 seconds
Test 3Test 271 seconds
Test 359 seconds
Test 461 seconds
Test 5Test 543 seconds43 seconds

Fig. 4

(i) Name **three** different pieces of equipment the group would use to carry out their fieldwork at this site.

1 2 3[3] (ii) Calculate the average velocity at site 1 using the results shown in Fig. 4.Show your working and your answer in the box below.

Study site:1Group AAverage (mean) length of time to float 10 metres =Average velocity =distance
average timeAverage velocity =metres per second

(iii) When they had completed their measurements at site 1 the two groups compared their results. These results are shown in Table 6 below.

Table 6

Times for a floating object to travel 10 metres at site 1

	Group A	Group B	
Test 1	Test 1 48 seconds		
Test 2	71 seconds	27 seconds	
Test 3	59 seconds	49 seconds	
Test 4	61 seconds	29 seconds	
Test 5	43 seconds	31 seconds	

Suggest two reasons why the results obtained by the two groups were different.

For Examiner's

Use

[3]

10

(iv) At each site the students also measured the downstream slope (gradient) of the river bed using a clinometer and ranging poles. Photograph A (Insert) shows the measurement being taken.

Describe how the students measured the downstream slope.

[3]

(v) The downstream slope and average velocity results which group B obtained at the five sampling sites are shown in Table 7 below.

Table 7

Results of group B

site	gradient (degrees)	average velocity (m/s)
nearest source 1	8	0.29
2	6	0.43
3	5	0.37
4	3	0.46
5 nearest mouth	1	0.47

What conclusion would the students have made about **Hypothesis 1**: *Velocity increases as the river bed slopes more steeply*?

Use evidence from Table 7 to support the conclusion.

 (c) To investigate **Hypothesis 2**: *Velocity increases as the wetted perimeter of the river channel increases*, the students needed to measure the width of the river channel and the depth of the river at each site.

For Examiner's Use

(i) Complete Fig. 5 below to identify the two different pieces of equipment used to measure the width of the river.
 [2]

(ii) The students measured the depth of the river every 0.5 m across the channel.Their results for site 1 are shown in Table 8, below.

Table 8

Results for site 1

Distance across channel (m)	0.5	1.0	1.5	2.0	2.5	3.0
Depth of river (m)	0.18	0.20	0.25	0.40	0.30	0.20

Use these results to complete Fig. 6 below, the cross-section of the channel at site 1. [2]

0460/43/M/J/13

[Turn over www.theallpapers.com (iii) Photograph B (Insert) shows how students measured the wetted perimeter of a river. The wetted perimeter is the part of the channel cross-section which the river touches.

For Examiner's Use

Their method is described in Fig. 7, below, which is part of a student's fieldwork notebook.

Extract from fieldwork notebook

<u>Measuring the wetted perimeter</u> The tape measure was placed along the bed of the river, starting and finishing at water level on both banks. To make the method more accurate a student walked along it to cross the river.

Fig. 7

The students' results are shown in Table 9 (Insert). Use these results to complete Fig. 8 below by plotting the result for site 1. [1]

Do their results support Hypothesis 2: Velocity increases as the wetted perimeter (iv) of the river channel increases? Support your conclusion with evidence from Table 9 Examiner's and Fig. 8.[3] (v) Suggest two disadvantages of their method for measuring the wetted perimeter in a large river. 1 2[2] (d) To extend their fieldwork the students investigated the impact of people on the river. State one impact people may have on a river. Describe how the impact could be investigated. Impact of people Investigation[4] [Total: 30 marks]

For

Use

BLANK PAGE

14

© UCLES 2013

BLANK PAGE

BLANK PAGE

16

Copyright Acknowledgements:

Question 2 Photograph A Question 2 Photograph B © www.georesources.co.uk/darentfte2.

© Amy Hatchwell; Royal Geographical Society;

www.rgs.org/OurWork/Schools/Fieldwork+and+local+learning/Fieldwork+techniques/Rivers.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.