

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 1
October/November 2016
MARK SCHEME
Maximum Mark: 75
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent			
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)			
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)			
CWO	Correct Working Only – often written by a 'fortuitous' answer			
ISW	Ignore Subsequent Working			
SOI	Seen or implied			
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)			

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\hline \)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

			ı		
1		$kx^2 - 3x = x - k \implies kx^2 - 4x + k = 0$	M1		Eliminate <i>y</i> and rearrange into 3-term quad
		$(-4)^2 - 4(k)(k)$ soi	M1		$b^2-4ac.$
		$k > 2$, $k < -2$ cao Allow $(2, \infty)$ etc. Allow $2 < k < -k$	A1	[3]	
2		$(+/-)20\times3^{3}(x^{3}), 10a^{3}(x^{3}) \text{ soi}$	B1B1		Each term can include x^3
		$-540 + 10a^3 = 100 \text{ oe}$	M1		Must have 3 terms and include a^3 and 100
		a = 4	A1	[4]	a and 100
3		$4\sin^2 x = 6\cos^2 x \Rightarrow \tan^2 x = \frac{6}{4} \text{ or } 4\sin^2 x = 6(1 - \sin^2 x)$	M1		$Or 4(1-\cos^2 x) = 6\cos^2 x$
		[$\tan x = (\pm)1.225 \text{ or } \sin x = (\pm)0.7746 \text{ or } \cos x = (\pm)0.6325$] x = 50.8 (Allow 0.886 (rad)) Another angle correct	A1 A1√		Or any other angle correct Ft from 1st angle (Allow radians) All 4 angles correct in degrees
		$x = 50.8^{\circ}, 129.2^{\circ}, 230.8^{\circ}, 309.2^{\circ}$ [0.886, 2.25/6, 4.03, 5.40 (rad)]	A1	[4]	The Fungion Correct in degrees
4		$f'(x) = 3x^2 - 6x - 9$ soi	B1		
		Attempt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$ soi	M1		
		(3)(x-3)(x+1) or 3,-1 seen or 3 only seen	A1		With or without
		Least possible value of n is 3. Accept $n = 3$. Accept $n \ge 3$	A1	[4]	equality/inequality signs Must be in terms of <i>n</i>
5	(i)	$\cos 0.9 = OE / 6$ or $= \sin \left(\frac{\pi}{2} - 0.9\right)$ oe	M1		Other methods possible
		$OE = 6\cos 0.9 = 3.73$ oe AG	A1	[2]	
	(ii)	Use of $(2\pi - 1.8)$ or equivalent method	M1		Expect 4.48
		Area of large sector = $\frac{1}{2} \times 6^2 \times (2\pi - 1.8)$ oe	M1		Or $\pi 6^2 - \frac{1}{2}6^2 1.8$. Expect 80.70
		Area of small sector $\frac{1}{2} \times 3.73^2 \times 1.8$	M1		Expect 12.52 Other methods possible
		Total area = $80.7(0) + 12.5(2) = 93.2$	A1	[4]	
6	(i)	$\frac{2+x}{2} = n \implies x = 2n-2$	B1		No MR for $(\frac{1}{2}(2+n), \frac{1}{2}(m-6))$
		$\frac{m+y}{2} = -6 \implies y = -12 - m$	B1	[2]	Expect $(2n-2, -12-m)$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

				l	
	(ii)	Sub their x, y into $y = x + 1 \rightarrow -12 - m = 2n - 2 + 1$	M1*		Expect $m + 2n = -11$
		$\frac{m+6}{2-n} = -1$ oe Not nested in an equation	B 1		Expect $m-n=-8$
		Eliminate a variable	DM1		
		$m = -9, \ n = -1$	A1A1	[5]	Note: other methods possible
				[5]	
7	(i)	AB.AC = $3-2-1=0$ hence perpendicular or 90°	B1		3 – 2 – 1 or sum of prods etc must be seen
		AB.AD = $3 + 4 - 7 = 0$ hence perpendicular or 90°	B 1		Or single statement: mutually
		$AC.AD = 1 - 8 + 7 = 0$ hence perpendicular or 90° AG	B1	[2]	perpendicular or 90° seen at least
				[3]	once.
	(ii)	Area $ABC = (\frac{1}{2})\sqrt{3^2 + 1^2 + 1^2} \times \sqrt{1^2 + (-2)^2 + (-1)^2}$	M1		
	(11)	$=\frac{1}{2}\sqrt{11}\times\sqrt{6}$	A1		Expect $\frac{1}{2}\sqrt{66}$
		Vol. = $\frac{1}{3}$ their $\triangle ABC \times \sqrt{1^2 + 4^2 + (-7)^2}$	M1		Expect /2 y 00
		·	IVII		
		$=\frac{1}{6}\sqrt{66}\times\sqrt{66} = 11$	A1	[4]	Not 11.0
				ניין	
8	(i)	$(2x+3)^2 + 1$ Cannot score retrospectively in (iii)	B1B1B1	[2]	For $a = 2$, $b = 3$, $c = 1$
				[3]	
	(ii)	g(x) = 2x + 3 cao	B1	F13	In (ii),(iii) Allow if from
				[1]	$4\left(x+\frac{3}{2}\right)^2+1$
					(2)
((iii)	$y = (2x+3)^2 + 1 \Rightarrow 2x+3 = (\pm)\sqrt{y-1}$ or ft from (i)	M1		Or with x/y transposed.
		$x = (\pm)\frac{1}{2}\sqrt{y-1} - \frac{3}{2}$ or ft from (i)	M1		Or with x/y transposed Allow
			1411		sign errors.
		$(fg)^{-1}(x) = \frac{1}{2}\sqrt{x-1} - \frac{3}{2}$ can Note alt. method $g^{-1}f^{-1}$	A1		Must be a function of x . Allow $y = \dots$
		Domain is $(x) > 10$	B1		Allow $(10, \infty)$, $10 < x < \infty$ etc.
				[4]	but not with <i>y</i> or f or g involved. Not ≥ 10
		ALT. method for first 3 marks:			1100/10
		Trying to obtain $g^{-1}[f^{-1}(x)]$	*M1		
		$g^{-1} = \frac{1}{2}(x-3), f^{-1} = \sqrt{x-1}$	DM1		Both required
		A1 for $\frac{1}{2}\sqrt{x-1} - \frac{3}{2}$	A1		
		2 2			

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

9 (a)	$\frac{6}{1-r} = \frac{12}{1+r}$ $r = \frac{1}{3}$ $S = 9$	M1 A1 A1	[3]	
(b)	$\frac{13}{2} \left[2\cos\theta + 12\sin^2\theta \right] = 52$ $2\cos\theta + 12(1-\cos^2\theta) = 8 \rightarrow 6\cos^2\theta - \cos\theta - 2(=0)$ $\cos\theta = 2/3 \text{or} -1/2 \text{soi}$ $\theta = 0.841 , 2.09 \text{Dep on previous A1}$	M1* DM1 A1 A1A1	[5]	Use of correct formula for sum of AP Use $s^2 = 1 - c^2$ & simplify to 3-term quad Accept 0.268π , $2\pi/3$. SRA1 for 48.2° , 120° Extra solutions in range -1
10 (i)	at $x = a^2$, $\frac{dy}{dx} = \frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^{-2} + a^{-2} \left(= \frac{3}{a^2} \text{ or } 3a^{-2} \right)$ $y - 3 = \frac{3}{a^2} (x - a^2) \text{ or } y = \frac{3}{a^2} x + c \rightarrow 3 = \frac{3}{a^2} a^2 + c$ $y = \frac{3}{a^2} x \text{ or } 3a^{-2} x \text{ cao}$	B1 M1 A1	[3]	$\frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^{-2} + a^{-2} \text{ seen}$ anywhere in (i) Through (a ² ,3) & with their grad as f(a)
(ii)	$(y) = \frac{2}{a} \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{ax^{-\frac{1}{2}}}{-\frac{1}{2}} (+c)$ sub $x = a^2$, $y = 3$ into $\int dy / dx$ $c = 1 (y = \frac{4x^{\frac{1}{2}}}{a} - 2ax^{-\frac{1}{2}} + 1)$	B1B1 M1 A1	[4]	c must be present. Expect $3 = 4 - 2 + c$
(iii)	sub $x=16$, $y=8 \rightarrow 8 = \frac{4}{a} \times 4 - 2a \times \frac{1}{4} + 1$ $a^2 + 14a - 32(=0)$ a=2 $A = (4, 3), B = (16, 8)$ $AB^2 = 12^2 + 5^2 \rightarrow AB = 13$	*M1 A1 A1 DM1A1	[5]	Sub into <i>their y</i> Allow –16 in addition

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

11 (i)	Attempt diffin. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$	*M1		Must contain $(kx-3)^{-2}$ + other
	$(kx-3)^2 = 1$ or $k^3x^2 - 6k^2x + 8k = 0$	DM1		term(s) Simplify to a quadratic
	$x = \frac{2}{k}$ or $\frac{4}{k}$	*A1*A1		Legitimately obtained
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2k^2 \left(kx - 3\right)^{-3}$	B 1√		Ft must contain $Ak^2(kx-3)^{-3}$
	When $x = \frac{2}{k}$, $\frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previous	DB1		where A>0 Convincing alt. methods (values either side) must show which
	When $x = \frac{4}{k}$, $\frac{d^2y}{dx^2} = (2k^2) > 0$ MIN working correct	DB1		values used & cannot use $x = 3 / k$
			[7]	
(ii)	$V = (\pi) \int \left[(x-3)^{-1} + (x-3) \right]^2 dx$	*M1		Attempt to expand y^2 and then integrate
	$= (\pi) \int [(x-3)^{-2} + (x-3)^2 + 2] dx$	A1		integrate
	$= (\pi) \left[-(x-3)^{-1} + \frac{(x-3)^3}{3} (+2x) \right]$ Condone missing 2x	A1		Or
				$\left[-(x-3)^{-1} + \frac{x^3}{3} - 3x^2 + 9x + 2x \right]$
	$= (\pi) \left[1 - \frac{1}{3} + 4 - \left(\frac{1}{3} - 9 + 0 \right) \right]$	DM1		Apply limits $0\rightarrow 2$
	$=40\pi/3$ oe or 41.9	A1	[5]	2 missing \rightarrow 28 π / 3 scores M1A0A1M1A0