Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

PHYSICS

0625/41
Paper 4 Extended Theory
October/November 2016
MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - October/November 2016 | 0625 | 41 |

NOTES ABOUT MARK SCHEME SYMBOLS AND OTHER MATTERS

M marks	are method marks upon which further marks depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent marks can be scored.
B marks:	are independent marks, which do not depend on other marks. For a B mark to scored, the point to which it refers must be seen specifically in the candidate's answers.
A marks	In general A marks are awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded. It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. However, correct numerical answers with no working shown gain all the marks available.
C marks	are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored
A C marks is not awarded if a candidate makes two points which contradict each other.	
Points which are wrong but irrelevant are ignored.	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Significant Answers are normally acceptable to any number of significant figures $\geqslant 2$. Any exceptions to Figures this general rule will be specified in the mark scheme.

Units Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working.

Arithmetic errors Deduct one mark if the only error in arriving at a final answer is clearly an arithmetic one.

Transcription Deduct one mark if the only error in arriving at a final answer is because given or previously errors calculated data has clearly been misread but used correctly.

Fractions (e.g. $1 / 2$) Allow these only where specified in the mark scheme.
Crossed out work Work which has been crossed out and not replaced but can easily be read, should be marked as if it had not been crossed out.

Use of NR (\# key on the keyboard) Use this if the answer space for a question is completely blank or contains no readable words, figures or symbols.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question		Answer
1(a)(i)	Straight line from origin to $(4.5 \mathrm{~s}, 7.2 \mathrm{~m} / \mathrm{s})$ Tolerance in plotting: $1 / 2$ a square	Marks
1(a)(ii)	Use of area stated or implied by numbers used OR average speed \times time OR $\mathrm{s}=(\mathrm{u}+\mathrm{v}) / \mathrm{t} / 2$ OR vt $/ 2$ OR $0.5 \times 4.5 \times 7.2$ $16(.2) \mathrm{m}$	C1
1(b)	Rises from origin and curves with decreasing gradient Finishes horizontal	A1
1(c)	Speed is scalar Velocity is vector Speed has magnitude $/$ size $/$ value $($ only $)$ Velocity has magnitude $/$ size $/$ value and direction OR velocity has direction; speed does not	B1
		B1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question	Answer	Marks
2(a)(i)	$(P=)$ hdg OR $15 \times 1000 \times 10$ 1.5×10^{5} or 150000 Pa or $\mathrm{N} / \mathrm{m}^{2}$ or 150 kPa or $\mathrm{kN} / \mathrm{m}^{2}$	C1 A1
2(a)(ii)	$(\mathrm{F}=)$ PA OR 150000×6000 $9.0 \times 10^{8} \mathrm{~N} / 9.0 \times 10^{5} \mathrm{kN}$	C1
2(a)(iii)	Same value as (a)(ii) or $9.0 \times 10^{8} \mathrm{~N}$	A1
2(b)	Weight of tanker has to be equal to upward force of water Depth (below surface) is $/$ becomes less OR Tanker rises (Tanker rises) because pressure/force on bottom of tanker is greater OR because upthrust greater OR At same depth as in river, pressure/force on bottom of tanker is higher so tanker rises	B1
		B1

Question	Answer		Marks
3(a)	(Molecules/they) collide with/hit walls of container OR rebound from walls of container Change of momentum OR Rate of change of momentum occurs OR F $=(m v-m u) / t$		B1 B1
3(b)(i)	$(760+120=) 880 \mathrm{mmHg}$		B1
3(b)(ii)	Same value as (b)(i) or 880 mmHg		B1
3(b)(iii)	```New pressure = (760 + 240 =) 1000 (mmHg) PV = constant OR P P V V = P P V V OR 12 × 880=V }\times100 11 cm```		C1 C1 A1
		Total:	7

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question	Answer		Marks
4(a)	Evaporation Molecules with higher/highest (kinetic) energy OR that gain enough energy escape (from the liquid surface) Molecules remaining in liquid have low/lower (kinetic) energy OR Energy for evaporation came from remaining liquid		B1 B1 B1 B1
4(b)	Greater decrease in temperature and/or volume than in (a). Fan removes vapour/blows vapour away/ reduces humidity/reduces return of vapour to liquid, allowing more molecules to escape OR faster/more evaporation		B1 B1
4(c)	Metal is a good (thermal) conductor so passes heat to the liquid or from the surroundings (raising its temperature)		B1
		Total:	8

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question	Answer	Marks
$5(\mathrm{a})$	Molecular arrangement: Ice: in lattice/regular/arranged/orderly/fixed in place Water: random/irregular/not arranged/not orderly Molecular movement: Ice: vibrate Water: move (around) or slide over each other	B2
$5(\mathrm{~b})($ (i)	$\mathrm{d}=\mathrm{m} / \mathrm{V}$ in any form OR ($\mathrm{m}=$) Vd OR $1800 \times 0.025 \times 920$ $=41000 \mathrm{~kg}$	C1 A1
$5(\mathrm{~b})$ (ii)	$(\mathrm{H}=) \mathrm{mL}$ OR $41400 \times 3.3 \times 10^{5}$ $1.4 \times 10^{10} \mathrm{~J}$ OR $1.4 \times 10^{7} \mathrm{~kJ}$ OR $1,4 \times 10^{4} \mathrm{MJ}$	C1
Total		$\mathbf{A 1}$

Question	Answer	Mark
6(a)(i)	$300-360 \mathrm{~m} / \mathrm{s}$	B1
6(a)(ii)	$20 \mathrm{~Hz}-20 \mathrm{kHz}$	B1
6(b)(i)	$v=f \lambda O R(f=) v / \lambda O R(a)(i) / 0.022$ Correct answer: e.g. $330 \mathrm{~m} / \mathrm{s}$ gives 15000 Hz	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$
6(b)(ii)	Vertical dotted lines midway (by eye) between each pair of compressions OR to right or left of compressions shown with correct spacing (by eye)	B1
6(b)(iii)	(At rarefactions) molecules have above normal separation/far apart/spread out Pressure (of air) is below normal/low OR Molecules exert below normal/low pressure	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
	Total:	7

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question	Answer	Marks
7(a)(i)	Ray continues through first face, without bending, to sloping face Ray reflected vertically down at sloping face	M1 A1
7(a)(ii)	Prism drawn with correct orientation in square Correct reflection to produce emergent ray	M1
7(b)	Tick in box 2 Tick in box 6	A1
		B1
	B1	

Question	Answer		Marks
8(a)	12 V		B1
8(b)	$\begin{aligned} & (I=) \text { V/R } \\ & 12 / 8 \text { OR } 1.5(\mathrm{~A}) \\ & (\mathrm{W}=) \mathrm{IVt} \text { OR } 1.5 \times 12 \times 40(\times 60) \\ & \mathrm{OR} \\ & (\mathrm{~W}=) I^{2} R t \text { OR } 1.5^{2} \times 8 \times 40(\times 60) \\ & \text { OR } \\ & \mathrm{W}=\mathrm{V}^{2} \mathrm{t} / \mathrm{R} \text { OR } 12^{2} \times 40(\times 60) / 8 \\ & 43000 \mathrm{~J} \end{aligned}$		C1 C1 C1 A1
8(c)	Chemical (energy) to electrical (energy) (in battery) Electrical (energy) to thermal/ heat (energy) (in resistor)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
		Total:	7

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question	Answer	
9	Mention of overheating or fire seen anywhere Mention of electric shock or electrocution seen anywhere Any two of: Fire/overheating: if thin/extension cable carries too large a current OR because thin/extension cable has no fuse. Fire/overheating due to extension cable being coiled (so that escape of heat is prevented) Electric shock/electrocution (of gardener) if unsuitable socket lets in moisture/gets wet Electric shock/electrocution (of gardener) if tape repair lets in moisture/gets wet Electric shock/electrocution if cable is cut by mower and no circuit-breaker	B1 B1

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question	Answer	
10(a)	(Wire) moves vertically or down (page) Moves up (page) OR Magnetic field is into the page OR (Fleming's) left hand-rule applies	C1 A1
10(b)	Moves up and down (page)/vibrates up and down (page) (Vertical) force on wire alternates OR due to interaction of field of magnet and alternating field (of current)	B1
		B1

Question	Answer		Marks
11(a)(i)	(Region) where a force acts on a charge		B1
11(a)(ii)	Direction of the force acting on a positive charge		B1
11(b)	At least 4 radial equally spaced straight lines drawn from surface of sphere Arrows on lines pointing away from sphere		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
11(c)(i)	Charges on sphere attract electrons (from earth) OR There is a p.d. between the sphere and earth		B1
11(c)(ii)	$\begin{aligned} & I=Q / t \text { in any form } O R Q / t \text { OR } 20 \times 10^{-6} /(20 \times 60) \\ & 1.7 \times 10^{-8} \mathrm{~A} \\ & \text { OR } \\ & I=Q / t \text { in any form } O R Q / t \text { OR } 20 /(20 \times 60) \\ & 0.017 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} \text { C1 } \\ \text { A1 } \\ \\ \text { (C1) } \\ \text { (A1) } \end{array}$
		Total:	7

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	41

Question	Answer		Marks
12(a)(i)	Atomic number OR number of protons OR proton number		B1
12(a)(ii)	94		B1
12(b)	$\begin{gathered} { }^{237} \mathrm{~Np} \\ { }_{93} \\ +{ }_{2} \alpha \end{gathered}$		B1 B1
12(c)	(No of Am atoms remaining $\left.=8 \times 10^{14}-6 \times 10^{14}\right)=2 \times 10^{14}$ 4×10^{14} (Am atoms remain after) 470 yrs or 1 half-life ($2 \times 10^{14} \mathrm{Am}$ atoms remain after) 940 yrs or 2 half-lives		$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$
		Total:	7

[^0]: $®$ IGCSE is the registered trademark of Cambridge International Examinations.

