Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

PHYSICS

0625/42
Paper 4 Extended Theory
October/November 2016
MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - October/November 2016 | 0625 | 42 |

NOTES ABOUT MARK SCHEME SYMBOLS \& OTHER MATTERS

M marks	are method marks upon which further marks depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent marks can be scored.
B marks	are independent marks, which do not depend on other marks. For a B mark to scored, the point to which it refers must be seen specifically in the candidate's answers.
A marks	In general A marks are awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded. It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. However, correct numerical answers with no working shown gain all the marks available.
C marks	are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored
A C mark is not awarded if a candidate makes two points which contradict each	
other. Points which are wrong but irrelevant are ignored.	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	42

Ignore	Indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.
ecf	meaning "error carried forward" is mainly applicable to numerical questions, but may in particular circumstances be applied in non-numerical questions. This indicates that if a candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by ecf may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated ecf.
Sig. figs	Answers are normally acceptable to any number of significant figures $\geqslant 2$ 2. Any exceptions to this general rule will be specified in the mark scheme. In general, accept numerical answers, which, if reduced to two significant figures, would be right.
Units	Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working.
Arithmetic errors	Deduct one mark if the only error in arriving at a final answer is clearly an arithmetic one.
Transcription	Deduct one mark if the only error in arriving at a final answer is because given or errors previously calculated data has clearly been misread but used correctly..
Fractions	e.g. $1 / 2,1 / 4,1 / 10$ etc are only acceptable where specified.
Crossed out work Work which has been crossed out and not replaced but can easily be read,	
should be marked as if it had not been crossed out.	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	42

Question	Answer	Marks
1(a)(i)	constant gradient OR straight line	B1
1(a)(ii)	calculation of gradient $(\mathrm{a}=4 / 2=) 2.0 \mathrm{~m} / \mathrm{s}^{2}$	C1 A1
1(a)(iii)	decreases/becomes zero	B1
1(b)	area or $\mathrm{s}=(\mathrm{av}) \mathrm{v} \times \mathrm{t}$ use of any triangle or trapezium (total distance =) 54-66 (m) (total distance $=$) $58-62 \mathrm{~m}$	C1 C1 C1 A1

Question	Answer	Marks
2(a)(i)	(K.E. =) $112 m v^{2}$	B1
2(a)(ii)	scalar AND direction does not matter	B1
2(b)(i)	$\begin{aligned} & p=m v \text { in any form OR mv } \\ & (p=200 \times 2.5=500 \mathrm{kgm} / \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$
2(b)(ii)	$\begin{aligned} & 500-(50 \times 4.0) \text { or } 500-200 \\ & (v=300 / 200=) 1.5 \mathrm{~m} / \mathrm{s} \end{aligned}$ (in) same direction (as original motion)	C1 A1 B1
2(b)(iii)	(during collision kinetic energy transferred to) elastic/strain energy (elastic) energy transferred to kinetic energy or returned to $\operatorname{car}(\mathrm{s})$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	42

Question	Answer	Marks
3(a)(i)	vacuum/mercury vapour	B1
3(a)(ii)	(arrowed) line between mercury surfaces	B1
3(a)(iii)	(distance stays the) same	B1
3(b)(i)	$(760-15=) 750(\mathrm{~mm} \mathrm{Hg})$	B1
3 (b)(ii)	$p_{1} V_{1}=p_{2} V_{2}$ in any form OR $p_{1} V_{1} / V_{2}$ correct substitution of 12.0 and 4.0 correct calculation of p_{2} from cand's p_{1} and correct V_{1} and V_{2} $\text { (reading }=760-45=715=\text {) } 720 \mathrm{~mm} \mathrm{Hg}$	C1 C1 A1 B1

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Marks

\hline 4(a) \& $$
\begin{aligned}
& \text { (output) power = VI in any form OR VI } \\
& \text { (power }=240 \times 23=5500(\mathrm{~W}) \\
& \text { efficiency }=\text { output }(\text { power }) / \text { input (power) } \\
& \text { (efficiency }=5520 / 16200=\text {) } 0.34 \text { or } 34 \%
\end{aligned}
$$ \& C1
C1
C1

A1

\hline 4(b) \& chemical OR potential \& B1

\hline 4(c) \& | relevant environmental pro or con, e.g. no/less air pollution, no/less greenhouse gases OR visual/noise impact/pollution, injure birds, |
| :--- |
| deforestation, conserves non-renewables |
| relevant economic pro or con, e.g. no fuel cost or expensive to install (compared to other types of generation) | \& B1

B1

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	42

Question	Answer	Marks
$5(a)($ i)	in ice, molecules in fixed positions AND in water, positions change	B1
5 (a)(ii)	in ice, molecules vibrate AND in water, molecules move around (and vibrate)	B1
$5(b)($ (i)	m / ρ OR $\rho=\mathrm{m} / \mathrm{V}$ in any form $(V=51000 / 920=) 55 \mathrm{~m}^{3}$	C1
5 (b)(ii)	mL OR Q $=\mathrm{mL}$ in any form $\left(Q=51000 \times 3.3 \times 10^{5}\right)=1.7 \times 10^{10} \mathrm{~J}$	A1
5 (c)	thermocouple	A1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	42

Question	Answer	Marks
$7(a)$	rectangle and diagonal line with end parallel to length of rectangle	B1
7(b)	first 2 rows of D both 0	
last 2 rows of D both 1		
each row of column E logical OR of (column C and candidate's column D)	B1	
7(c)	two single inputs 0 AND 1	B1
	two correct single outputs 1 AND 0	B1

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	42

Question	Answer	Marks
8(a)	ultra-violet written above / below ultrasound radio written above/below earthquake	B1 B1
8(b)(i)	$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$	B1
8(b)(ii)1	$\begin{aligned} & \mathrm{n}=\mathrm{C}_{\mathrm{v}} / \mathrm{C}_{\text {of }} \text { in any form } \mathrm{OR}(\mathrm{n}=) \mathrm{C}_{\mathrm{v}} / \mathrm{C}_{\text {of }} \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$
8(b)(ii)2	$\sin \mathrm{c}=1 / \mathrm{n}$ in any form $\mathrm{OR}(\mathrm{c}=)_{\sin ^{-1}}(1 / \mathrm{n})$ 42°	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$
8(b)(iii)	total internal reflection	B1

Question	Answer	Marks
9(a)	4.5 V	B1
9(b)(i)	$\begin{aligned} & 1 / R=1 / R_{1}+1 / R_{2} O R R_{1} R_{2} /\left(R_{1+} R_{2}\right) \\ & (R=) 20 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$
9(b)(ii)	adds 55 to candidate's previous line	B1
9(b)(iii)	$\mathrm{I}=\mathrm{V} / \mathrm{R}$ in any form $\mathrm{OR} \mathrm{V} / \mathrm{R}$ $(I=4.5 / 75=) 0.060 \mathrm{~A}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$
9(c)(i)	reference to 55Ω resistor	B1
9(c)(ii)	reference to 60Ω resistor	B1

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0625	$\mathbf{4 2}$

Question	Answer		Marks
10(a)	proton $(+)$ e neutron zero/neutral/no/none/nothing α-particle $(+) 2 \mathrm{e}$ β-particle -e γ-ray zero/neutral/no/none/ nothing		B3
10(b)(i)	into page		B1
10(b)(ii)	clearly 180° from bi		B1
10(b)(iii)	none		B1

Question	Answer	Marks
$11(\mathrm{a})$	$9.6 \times 10^{8} / 8$ 1.2×10^{8} (atoms)	C1
$11(\mathrm{~b})$	$160-16$ OR 144 $(144 / 8+16=18+16=) 34$ counts $/$ minute	C1

[^0]: ® IGCSE is the registered trademark of Cambridge International Examinations.

