CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the March 2016 series

9702 PHYSICS

9702/42
Paper 4 (A Level Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components.

1 (a) force proportional to product of the (two) masses and inversely proportional to the square of their separation
(b) gravitational force provides/is the centripetal force
$\mathrm{GMm} / r^{2}=m v^{2} / r$ or $\mathrm{GMm} / r^{2}=m r \omega^{2}$ and $v=r \omega$ and algebra leading to $v=(G M / r)^{1 / 2}$
(c) (i) 1. $v_{\mathrm{A}} / v_{\mathrm{B}}=\left(r_{\mathrm{B}} / r_{\mathrm{A}}\right)^{1 / 2}$

$$
\begin{aligned}
& =\left(2.2 \times 10^{10} / 1.3 \times 10^{8}\right)^{1 / 2} \\
& =13(13.0)
\end{aligned}
$$

2. $v=2 \pi r / T$ or $v \propto r / T$ or $v T / r=$ constant
$T_{\mathrm{A}} / T_{\mathrm{B}}=\left(r_{\mathrm{A}} / r_{\mathrm{B}}\right) \times\left(v_{\mathrm{B}} / v_{\mathrm{A}}\right)$

$$
\begin{aligned}
& =\left(1.3 \times 10^{8} / 2.2 \times 10^{10}\right) \times(1 / 13) \\
& =4.5(4.54) \times 10^{-4}
\end{aligned}
$$

A1
or

$$
\begin{equation*}
T^{2}=4 \pi^{2} r^{3} / G M \text { or } T^{2} \propto r^{3} \text { or } T^{2} / r^{3}=\text { constant } \tag{C1}
\end{equation*}
$$

$$
\begin{align*}
T_{\mathrm{A}} / T_{\mathrm{B}} & =\left(r_{\mathrm{A}}^{3} / r_{\mathrm{B}}^{3}\right)^{1 / 2} \\
& =\left[\left(1.3 \times 10^{8}\right)^{3} /\left(2.2 \times 10^{10}\right)^{3}\right]^{1 / 2} \tag{C1}\\
& =4.5(4.54) \times 10^{-4} \tag{A1}
\end{align*}
$$

(ii) $T=2 \pi / 1.7 \times 10^{-4}$

$$
\begin{equation*}
=3.70 \times 10^{4} \mathrm{~s} \tag{C1}
\end{equation*}
$$

$T_{\mathrm{B}}=3.70 \times 10^{4} / 4.54 \times 10^{-4}$

$$
=8.1 \times 10^{7} \mathrm{~s}
$$

If identifies T_{A} as T_{B} then $0 / 2$

2 (a) (i) sum of kinetic and potential energy of atoms/molecules
(ii) no forces (of attraction or repulsion) between molecules

B1
(b) $p V=N k T$ or $p V=n R T$ and $R=k N_{\mathrm{A}}, n=N / N_{\mathrm{A}}$

B1
$1 / 3 N m<c^{2}>=N k T$ or ${ }^{1} / 3 m<c^{2}>=k T$
B1
$<E_{K}>=1 / 2 m<c^{2}>$ so $<E_{K}>=3 / 2 k T$
(c) (i) $\left\langle E_{K}\right\rangle=\frac{3}{2} \times 1.38 \times 10^{-23} \times(273+12)$

$$
=5.9(5.90) \times 10^{-21} \mathrm{~J}
$$

(use of $T=12 \mathrm{~K}$ not $T=285 \mathrm{~K}$ scores $0 / 2$)
(ii) number $=(17 / 32) \times 6.02 \times 10^{23}$

C1

$$
=3.2(3.20) \times 10^{23}
$$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9702	42

(iii) internal energy $=5.9 \times 10^{-21} \times 3.2 \times 10^{23}$

$$
=1900(1890) \mathrm{J}
$$

3 (a) the (thermal) energy per unit mass to raise the temperature of a substance by one degree
(If ratio not clear for M1 mark, allow 1/2 marks for an otherwise correct answer)
(b) (i) to allow for/determine/cancel heat transfer to/from tube/surroundings

B1
(do not allow 'to stop/prevent' heat loss)
(ii) either $P=m c \Delta \theta \pm \mathrm{h}$
or $44.9=1.58 \times 10^{-3} \times c \times(25.5-19.5) \pm h$
or $33.3=1.11 \times 10^{-3} \times c \times(25.5-19.5) \pm h$
B1
$(44.9-33.3)=(1.58-1.11) \times 10^{-3} \times c \times(25.5-19.5)$
C1
$c=4100(4110) \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
A1
(allow $1 / 3$ for use of only $33.3 \mathrm{~W}, 1.11 \mathrm{~g} \mathrm{~s}^{-1}$ leading to $5000 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$)
(allow $1 / 3$ for use of only $44.9 \mathrm{~W}, 1.58 \mathrm{~g} \mathrm{~s}^{-1}$ leading to $4740 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$)
$\begin{array}{lll}\text { (c) } \begin{array}{ll}V_{0}=27 & \text { or } V_{\text {rms }}=19.1 \\ 33.3=27^{2} / 2 R & \text { or } 33.3=19.1^{2} / R\end{array} & \text { C1 } \\ R=11 \Omega & & \text { C1 }\end{array}$

4 (a) amplitude $=1.8 \mathrm{~cm}$ and period $=0.30 \mathrm{~s}$
(b) $E_{\mathrm{K}}=1 / 2 m \omega^{2}\left(x_{0}{ }^{2}-x^{2}\right)$ or $E_{\mathrm{K}}=1 / 2 m v^{2}$ and $v= \pm \omega \sqrt{ }\left(x_{0}{ }^{2}-x^{2}\right)$

C1
$=1 / 2 \times 0.080 \times(2 \pi / 0.30)^{2} \times\left[\left(1.8 \times 10^{-2}\right)^{2}-\left(1.2 \times 10^{-2}\right)^{2}\right]$
$=3.2 \times 10^{-3} \mathrm{~J}$
C1
$+2 \times 10^{-3}$ A1

5 (a) (i) (series of) 'highs' and 'lows' /'on' and 'off' / 1's and 0's/two values M1 with no intermediate values / the values are discrete A1
(ii) either use higher sampling frequency/rate
or use more bits in each sample/each digital number
or use more levels in each sample
(b) voltage $=30 \mathrm{mV}$
(a) speed $=Z / \rho$

$$
\begin{aligned}
& =1.4 \times 10^{6} / 940(=1490) \quad \mathrm{C} 1 \\
& \text { time }=\left(1.1 \times 10^{-2} \times 2\right) / 1490 \\
& =1.5 \times 10^{-5} \mathrm{~s} \\
& \text { (time of } 7.4 \times 10^{-6} \mathrm{~s} \text { is one way only and scores } 2 / 3 \text { marks) } \\
& \text { (use of speed of light is wrong physics and scores } 0 / 3 \text { marks) }
\end{aligned}
$$

(b) $I=I_{0} \exp (-\mu \mathrm{x})$ or $I_{2}=I_{1} \exp (-\mu \mathrm{x})$
ratio $=\exp \left(-48 \times 1.1 \times 10^{-2}\right)$

$$
=0.59
$$

(c) $0.33 / 100=0.59 \times\left(I_{3} / I_{2}\right) \times 0.59$

C1
ratio $=9.5 \times 10^{-3}$ A1
or
$0.33 / 100=\exp \left(-48 \times 2.2 \times 10^{-2}\right) \times\left(I_{3} / I_{2}\right)$
ratio $=9.5 \times 10^{-3}$
(d) ratio I_{3} / I_{2} increases

B1
(accept: "there is an increase in the proportion of the intensity that is reflected")

7 (a) (capacitance =) charge/potential (difference)
B1
(b) $V=V_{1}+V_{2}+V_{3}$

B1
either $\quad Q / C=Q / C_{1}+Q / C_{2}+Q / C_{3}$ or $V / Q=V_{1} / Q+V_{2} / Q+V_{3} / Q$ and so $1 / C=1 / C_{1}+1 / C_{2}+1 / C_{3}$

B1
(c) (i) 1. $1 / C_{T}=(1 / 200)+(1 / 600)$
$C_{T}=150 \mu \mathrm{~F}$
A1
2. $Q=C V$

$$
\begin{aligned}
& =150 \times 10^{-6} \times 12 \text { or } 600 \times 10^{-6} \times 3.0 \text { or } 200 \times 10^{-6} \times 9.0 \\
& =1.8 \times 10^{-3} \mathrm{C}
\end{aligned}
$$

A1
3. $V=Q / C=1.8 \times 10^{-3} / 600 \times 10^{-6}$ or $V=[200 /(200+600)] \times 12$

$$
=3(.0) \mathrm{V}
$$

(ii) energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $C=Q / V \quad C 1$
$1 / 2 \times C \times 3^{2}=2 \times \frac{1}{2} \times C \times V^{2}$
C1
$V=2.1 \mathrm{~V}$
A1

8 (a) decreases gain B1
increases bandwidth/decreases distortion/increases (operating) stability
B1
(b) (i) additional resistor connected between $7.2 \mathrm{k} \Omega$ resistor and earth
V^{-}joined to lower end of $7.2 \mathrm{k} \Omega$ resistor and V^{+}joined to V_{IN}
B1
(ii) either $5=1+(7.2 / R)$ or $5=1+(7200 / R) \quad \mathrm{C} 1$
$R=1.8 \mathrm{k} \Omega$
A1
(iii) horizontal line from $(0,8.0)$ to $(1.8,8.0)$ straight line from $(1.8,8.0)$ to $(5.0,0)$
(allow a tolerance of $\pm 1 / 2$ small square when marking the graph)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9702	42

9 (a) direction of force due to electric field opposite to force due to magnetic field electric field is up the page
(b) force due to electric field $=$ force due to magnetic field or $E q=B q v$
$E=B v$

$$
=9.7 \times 10^{-2} \times 1.6 \times 10^{5}
$$

$$
=1.6(1.55) \times 10^{4} \mathrm{Vm}^{-1}
$$

(c) $q / m=v / B r$

$$
=1.6 \times 10^{5} /\left(9.7 \times 10^{-2} \times 4.0 \times 10^{-2}\right)
$$

$$
=4.1(4.12) \times 10^{7} \mathrm{Ckg}^{-1}
$$

(d) (i) $m=\left(3 \times 1.60 \times 10^{-19}\right) /\left(4.12 \times 10^{7}\right)$

$$
m=1.16 \times 10^{-26} / 1.66 \times 10^{-27}
$$

$$
=7(.0) \mathrm{u}(\text { allow } 7.1 \mathrm{u})
$$

(ii) 3 protons, 4 neutrons

10 (a) (i) change in flux linkage $=40 \times(5.0-3.0) \times 10^{-6}$

$$
=8(.0) \times 10^{-5} \mathrm{~Wb}
$$

A1
(ii) time taken $=8.0 \times 10^{-5} / 5.0 \times 10^{-4}$

$$
\begin{equation*}
=0.16(\mathrm{~s}) \tag{C1}
\end{equation*}
$$

speed $=3.0 \times 10^{-2} / 0.16$

$$
=0.19(0.188) \mathrm{m} \mathrm{~s}^{-1}
$$A1

or

$$
\begin{align*}
& E=(\Delta \Phi / \Delta x) \times \text { speed } \\
& \text { speed } \tag{C1}\\
& =5.0 \times 10^{-4} /\left(8.0 \times 10^{-5} / 3.0 \times 10^{-2}\right) \tag{A1}\\
& \\
& =0.19(0.188) \mathrm{m} \mathrm{~s}^{-1}
\end{align*}
$$

(b) a constant non-zero value of E from 0 to 3 cm and a different constant non-zero value of E from 3 to 6 cm
E from $3-6 \mathrm{~cm}$ has the opposite sign to and larger value than E from $0-3 \mathrm{~cm}$

11 (a) minimum frequency for electron(s) to be emitted (from surface)
reference to frequency of electromagnetic radiation/photon
or
frequency causing emission of electron(s)
from surface with zero kinetic energy
reference to frequency of electromagnetic radiation/photon

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9702	42

(b) (i) positive intercept on $(1 / \lambda)$-axis (when extrapolated) B1 B1straight line with positive gradient
(ii) gradient $=h c$ where c is the speed of light
(iii) maximum kinetic energy when electron emitted from surface B1
energy is required to bring an electron to the surface B1
(iv) each photon has more energy M1
fewer photons per unit time M1
fewer electrons per unit time/less current A1
[2]B1 [1]

12 (a) (i) the penetration of the beam B1
(ii) either decrease the accelerating voltage or decrease voltage between cathode and anode B1
(b) advantage: image gives depth/image is 3D/final image can be viewed from any angleB1disadvantage: greater exposure/more risk to health/more expensive/person must remain stationaryB1
[2]

13 (a) $\lambda=\ln 2 / T_{1 / 2}$

$$
\begin{equation*}
=\ln 2 /(53.3 \times 24 \times 60 \times 60)=1.5 \times 10^{-7} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

A1
(b) $A=\lambda N$

C1
$N=39 \times 10^{-3} / 1.5 \times 10^{-7}=2.6 \times 10^{5}$
$m=\left(2.6 \times 10^{5} / 6.0 \times 10^{23}\right) \times 7 \times 10^{-3}$ or $2.6 \times 10^{5} \times 1.66 \times 10^{-27} \times 7$
C1
$=3.0 \times 10^{-21} \mathrm{~kg}$
A1
$\begin{array}{ll}\text { (c) } 2 / 39=\exp \left(-1.5 \times 10^{-7} \times t\right) \text { or } 2 / 39=(1 / 2)^{[t /(53.3 \times 24 \times 3600)]} & \mathrm{C} 1 \\ t=2.0 \times 10^{7} \mathrm{~s} & \mathrm{~A} 1\end{array}$ A1

