MARK SCHEME for the March 2016 series

9702 PHYSICS

9702/52

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age 2	Mark Scheme	Syllabus	Paper						
		Cambridge International AS/A Level – March 2016	9702	52						
1	Planning (15 marks)									
	Def	Defining the problem (2 marks)								
	Ρ	<i>k</i> is the independent variable and <i>h</i> is the dependent variable, or vary <i>k</i> ,	, measure <i>l</i>	n. [1]						
	Ρ	Keep mass of object constant.		[1]						
	Methods of data collection (4 marks)									
	М	Labelled diagram (minimum two labels) showing object (mass) attached end of cord fixed (e.g. stand and clamp or hook) <u>and</u> rule(r) drawn vertio	l to cord <u>an</u> cally next to	<u>d</u> other cord. [1]						
	М	Method of measuring mass e.g. balance/scales.		[1]						
	Μ	k = (weight or force)/extension or <i>mg</i> / <i>extension</i> ; allow graphical metho Allow any subject e.g. <i>mg</i> = $k \times extension$.	ds.	[1]						
	М	Use of rule to measure <i>h</i> or maximum distance/length (fallen by the obj Allow clear indication on diagram (i.e. dotted lines) linking distance <i>h</i> to Do not credit length of cord.	ject). rule.	[1]						
	Met	Method of analysis (3 marks)								
	✓	Plot a graph of $\frac{(h-L)^2}{h}$ against 1/k [Allow 2/k or 2m/k or m/k]		[1]						
	✓	g = gradient/2m [gradient/m or gradient or gradient/2]		[1]						
	✓	Relationship is valid if the graph is a straight line passing through the or	<u>rigin</u> .	[1]						
	Add	itional detail (6 marks)								
	D 1	Relevant points Keep starting point constant/drop object from same position/use of election object/ensure mass is dropped from fixed point/check object falls vertice	ctromagnet cally	[6] to drop						
	2 3	Rule(r) fixed e.g. refort stand Method to determine extension, e.g. <u>measure</u> length of stretched cord a length/50.0 cm. [Accept from a diagram]	and subtrac	t original						
	4	Safety precaution linked to prevention of mass/cord hitting a person – u screen/googles; sand tray to catch falling object if cord breaks	use safety							
	5 6	Trial experiment to locate approximate point of $h/to prevent object hittirDetailed use of video camera with slow motion or frame by frame playbacclearly explained$	ng surface ack/motion	sensor						
	7	Cord obeys Hooke's law or must not exceed elastic limit								
	8 9	For each cord, repeat experiment determine average <i>h</i>								

Do not allow vague computer methods.

[Total: 15 marks]

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9702	52

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer
(a)	A1	Gradient = $\frac{c_m \Delta \theta}{P}$ y-intercept = $\frac{m_w c_w \Delta \theta + k}{P}$
(b)	T1	Column heading <i>m</i> _m /g 100 200 300 400 500 600
	U1	From \pm 10 to \pm 60
(c)(i)	G1	Six points plotted correctly
	U2	Error bars in $m_{\rm m}$ plotted correctly
(ii)	G2	Line of best fit
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.
(iii)	C1	Gradient of best fit line
	U3	Difference in worst gradient and gradient.
(iv)	C2	y-intercept
	U4	Uncertainty in y-intercept
(d)(i)	C3	c_m in the range 470 to 530 and given to 2 or 3sf
	C4	$k = y$ -intercept x $P - m_w c_w \Delta \theta$ k = y-intercept x 50 - 21000
	C5	Units for <i>c_m</i> and <i>k</i>
(ii)	U5	Percentage uncertainty in C _m

[Total: 15 marks]

Page 4	Mark Scheme		Paper
	Cambridge International AS/A Level – March 2016	9702	52

Uncertainties in Question 2

- (c) (iii) Gradient [U3]
 - 1 Uncertainty = gradient of line of best fit gradient of worst acceptable line
 - 2 Uncertainty = 1/2 (steepest worst line gradient shallowest worst line gradient)
 - (iv) [U4]
 - 1 Uncertainty = *y*-intercept of line of best fit *y*-intercept of worst acceptable line
 - 2 Uncertainty = ½ (steepest worst line *y*-intercept shallowest worst line *y*-intercept)

(d) (ii) [U5]

1 %uncertainty =
$$\left(\frac{\Delta gradient}{gradient} + \frac{5}{50} + \frac{0.5}{20}\right)x100 = \left(\frac{\Delta gradient}{gradient}\right)x100 + 12.5\%$$

max gradient x max power max gradient x 55

$$2 \quad \max c_m = \frac{\max gradient x \max power}{\min temperature change} = \frac{\max gradient x 55}{19.5}$$

3
$$\min c_m = \frac{\min \text{gradient x min power}}{\max \text{temperature change}} = \frac{\min \text{gradient x45}}{20..5}$$