CAMBRIDGE

JUNE 2002

GCE Advanced Subsidiary Level

Page 1	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9702	2

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Рарег
	AS Level Examinations – June 2002	9702	2

1	(a)	allow 50 g - 500 g	B 1	[1]
	(b)	allow 3 MJ - 4 MJ	B1	[1]
	(c)	allow $(6.0 - 8.0) \times 10^{-7} \text{ m}$	B1	[1]
	(d)	allow $(5 \times 10^4) \rightarrow (5 \times 10^5)$ Pa	BI	[1]

(Ignore sig. fig. in (a), (b), (c) and (d).

.,

2	(a)	because all readings have same error OR can't be eliminated by repeating and averaging error is systematic	B1 B1	[2]
	(b)	micrometer measures to fraction of millimetre so is precise OR if repeated, reading is (almost constant) but all readings have error so is not accurate		[2]
3	(a)	point at which (whole) weight of body may be <u>considered</u> to act (allow definition based on gravitational force)		[2]
	•	 (i) 380 N (ii) position nearer A than B (iii) clear indication about which point moments are taken e.g. 950 × x = 380 × 1.7 x = 68 cm distance = 108 cm or 1.08 m (accept 2 sig fig) 	B1 B1 B1 C1 C1 A1	[6]

Page 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9702	2

4	(a)	$v^2 = 2gh$		
	. ,		C1	
		$v = 5.6 \mathrm{m s^{-1}}$	Al	[2]
	(b)	(i) working leading to idea that $h = 0.90 \times 1.6$	Ci	
	.,	h = 1.44 m (ii) $mgh = \frac{1}{2}mv^2$	Al	
		$v^2 = 2 \times 9.8 \times 1.44$	C1	
		$v = 5.3 \text{ m s}^{-1}$	Al	[4]
	(c)	$\Delta p = m(v - u) \text{ OR } p = mv \qquad \dots \qquad $	Cl	
		$\Delta p = 0.073 \times (5.6 + 5.3)$	C1	
		= 0.80 N s		[3]
	(d)	steel plate (and Earth)		
		must gain momentum of 0.80 N s		
		in downward direction	A 1	[3]
5	(a)	increase the height of the cylinder	B 1	[1]
	(b)	take heat out of gas OR expand gas OR cool it	B 1	[1]
	(c)	compress the gas OR increase pressure OR heat at constant volume	Bl	[1]
6	(a)	(i) top plate positive (ii) $E = V/d$ $V = 3.0 \times 10^4 \times 1.2 \times 10^{-2}$		
		= 360 V	A 1	[3]
	(b)	F = ma	C1	
		F = ma 3.0 × 10 ⁴ × 1.6 × 10 ⁻¹⁹ = 9.1 × 10 ⁻³¹ a	C1	
		$a = 5.3 \times 10^{15} \mathrm{m s^{-2}}$	A 1	[3]

Page 4	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9702	2

7	(a)	Fig.	. 6.1(a):	approximately circular wavefronts	M1 A1	
		Fig.	6.1(b):	constant wavelength (allow this in (a) or (b) wavefronts plane at centre curved at edges	B1 M1	[5]
	(b)	d si d si	$ in \theta = n $ in 13 = 2 d = 5	$2 - 136) = 13^{\circ}$ $2 \times 630 \times 10^{-9}$ 1.6×10^{-6} m 162° or 136° , max $2/4$)	CI CI	[4]
	(c)	e.g.	narrow	slits for light to pass through so more diffracted light and 'off-axis' fringes clearer	B 1	[1]
8		(i) (ii) (iii)	two res	histors in series histors in parallel rect combination ly in (iii) if connections to external circuit not clear)	B 1	[4]
	(b)		I =	= 100 <i>F</i> = 0.090 A	A1	
		(ii)	curren power	t in 25 Ω resistor = 0.045 A = 0.051 W	A1	[4]
9	(a))α-	particles	not able to penetrate air between source and window	Bi	[1]
	(b) (i)	for sm	drop in count rate		
		(ii)	very s for thi	lost β 's stopped by few mm of aluminium low drop-off in count rate cknesses greater than 2 mm	B 1	
		5		much higher penetration than β	Bl	[4]