Advai		OGE INTERNATIONAL EXAMINATIONS ertificate of Education ary Level and Advanced Level
PHYSICS		9702/03
Paper 3 Practical 1	Test	Mov/June 2004
		May/June 2004
Candidates answer on Additional Materials: A		1 hour 15 minutes aper. e Confidential Instructions.
	in the spaces pr ny diagrams, gra	
Answer the one question.		
presentation of the records so answers is to be handed in. Marks are mainly given for a accuracy, and for the use made Additional answer paper and g	that it is not ne clear record of of them. raph paper shou	ns as soon as these observations are made, and to plan the necessary to make a fair copy of them. The working of the of the observations actually made, for their suitability ar uld be submitted only if it becomes necessary to do so. In and clear presentation in your answers.
At the end of the examination,	fasten all your w	vork securely together.
		For Examiner's Use
If you have been given a label, details. If any details are incorre missing, please fill in your corre in the space given at the top of Stick your personal label here, provided.	ect or ect details this page.	For Examiner's Use

Centre Number

Candidate Number

Name

- 1 In this question you will determine the density of water by immersing a mass suspended by a spring into a beaker of water.
 - (a) (i) Set up the apparatus as shown in Fig.1.1. The pointers A and B should be attached to each end of the spring. The pointer A should also be attached to the paper clip. The pointer B should be attached to the mass holder. The total mass of the holder and the masses should be 200 g.

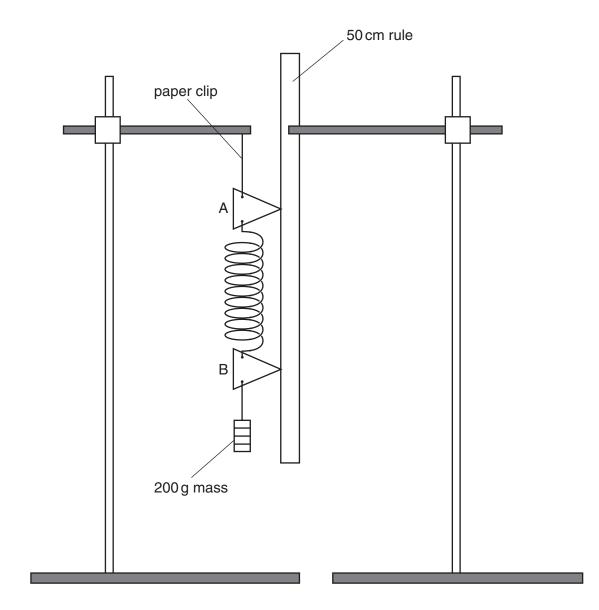


Fig. 1.1

(ii) Record the reading from pointer B.

reading from pointer B = m

(iii) Add a further mass of 100 g (0.98 N weight) to the mass holder and record the new reading from pointer B.

new reading from pointer B = m

(iv) Hence determine the extension of the spring when an additional force of 0.98 N is applied to the spring.

extension = m

(b) Hooke's law can be expressed in the form

F = kx,

where F is the force required to produce an extension x, and k is the spring constant.

Use your answers from (a) to determine a value for *k*. You may assume that the spring obeys Hooke's law.

 $k = \dots N m^{-1}$

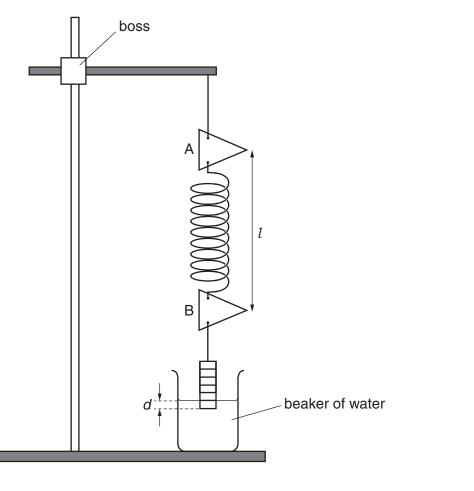
	diameter = m	
(ii)	Determine the percentage uncertainty in the measurement of the diameter of the mass.	
	percentage uncertainty =	
(iii)	Calculate the cross-sectional area A , in m ² , of the mass. Ignore the slot that is cut into the mass.	

 $A = \dots \dots m^2$

(c) (i) Use the vernier callipers to measure the diameter of one of the masses.

For Examiner's Use

(d) (i) Put all of the masses onto the mass holder so that the spring supports a total mass of 300 g. This mass should remain constant for the rest of the experiment. Record the readings from the pointers A and B and hence calculate a value for the length *l* between the pointers.


5

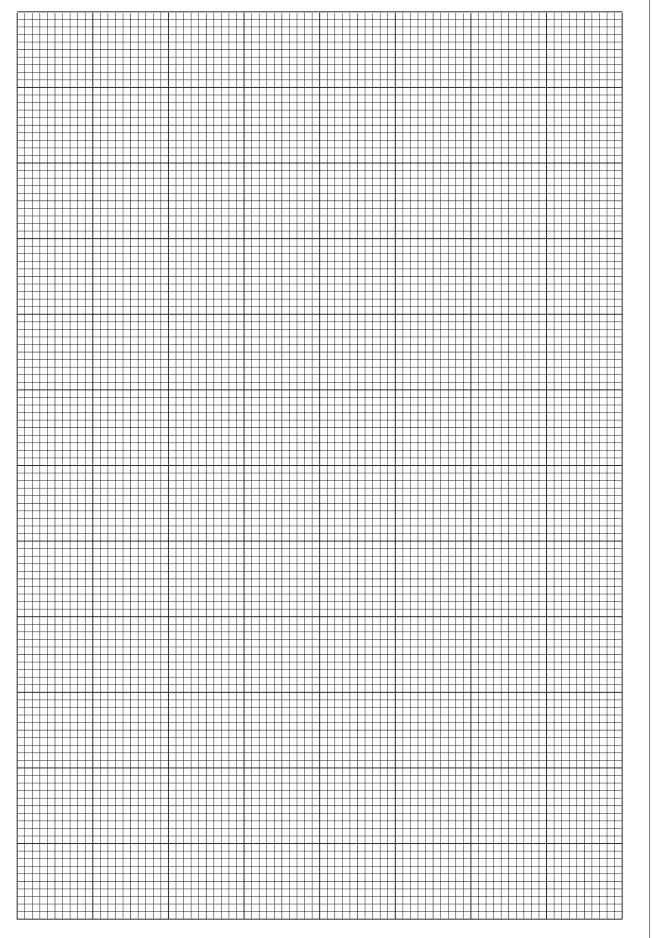
reading from pointer A = m

reading from pointer B = m

l = m

(ii) Place a beaker of water under the mass as shown in Fig. 1.2. Adjust the position of the boss so that part of the mass is immersed in the water as shown in Fig. 1.2.

(iii) Make and record measurements to determine the depth *d* of the submerged part of the mass and the length *l* between the pointers.


d = m

l = m

(iv) Adjust the position of the boss and repeat (iii) until you have six sets of readings for *d* and *l*. Record all your readings in a table in the space below.

- (e) (i) Plot a graph of l(y-axis) against d(x-axis).
 - (ii) Draw the line of best fit.
 - (iii) Determine the gradient of this line.

gradient =

7

For

Examiner's Use

[Turn over

(f) Theory suggests that l and d are related by the equation

$$l = \frac{-\rho_w Agd}{k} + c$$

8

where ρ_w is the density of water, g is the acceleration of free fall and c is a constant. You may assume that $g = 9.8 \text{ m s}^{-2}$.

Use your answer from (e)(iii) together with the values of A, g and k to determine a value for the density of water.

	ρ_w =		
(g)	An accurate measurement of d is not possible with the apparatus that has been supplied. State one difficulty that you had when making this measurement, and suggest one improvement that you would make if additional materials were available.		
	difficulty		
	improvement		

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.