UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the June 2005 question paper

9702 PHYSICS

9702/06
Paper 6, maximum mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9702 (Physics) in the June 2005 examination.

	maximum	minimum mark required for grade:		
	mark available	A	B	E
Component 6	40	26	23	14

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 9702/06
PHYSICS
Paper 6

Page 1	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - JUNE 2005	9702	6

Option A - Astrophysics and Cosmology

1 (a) position: on a spiral arm, between $1 / 2$ and $3 / 4$ distance from centre
(b) (i) allow $80000 \rightarrow 150000$ light-years B1
(ii) allow $2 \rightarrow 10$ light-years B1
(c) allow $10^{7} \rightarrow 10^{9}$ B1

2 (a) allow $10^{8} \rightarrow 10^{10} \mathrm{~K}$ B1
(b) position marked between $10^{12} \mathrm{~s}$ and $10^{13} \mathrm{~s}$ B1
(c) result of X-bosons (allow 'bosons') B1
at (very) early stages of development of the Universe B1
(X-) boson decays into quarks M1
(slightly) more slowly than its antiparticle decays A1

3 (a) (i) $H_{0}=\left(60 \times 10^{3}\right) /\left(3.1 \times 10^{16} \times 10^{6}\right)$ C1
$=1.9 \times 10^{-18}\left(\mathrm{~s}^{-1}\right)$
C1
age of Universe $=1 / H_{0}$ (or clear substitution for H_{0} shown) B1

$$
=5.2 \times 10^{17} \mathrm{~s}
$$

$$
=1.6 \times 10^{10} \text { years }
$$

A1
(ii) fraction of time $=\left(12600 \times 10^{6}\right) /\left(1.6 \times 10^{10}\right)$

$$
=0.79 \text { or } 63 / 80
$$A1

(iii) light left galaxy when Universe was much younger B1(so) 'looking back' in timeB1
(b) limit set by how far light can travel M1during the lifetime of the UniverseA1
or
galaxies at very large distances are moving very fast so Doppler shifted out of visible

Option F - The Physics of Fluids

4 (a) pressure difference (between upper and lower surfaces)
B1
(b) (i) mass $=$ density \times volume C1

$$
=920 \times 6.4 \times 10^{4} \times(28+d)
$$

(ii) either $920 \times 6.4 \times 10^{4} \times(28+d)$

$$
\text { or } 1030 \times 6.4 \times 10^{4} \times d
$$

(c) (i) $920 \times 6.4 \times 10^{4} \times(28+d)=1030 \times 6.4 \times 10^{4} \times d$ C1
$d=234 \mathrm{~m}$ A1
(ii) fraction $\begin{aligned} & =234 /(234+28) \\ & =0.89\end{aligned}$

$$
=0.89
$$

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - JUNE 2005	9702	6

5 (a) fluid in which there is internal friction B1
either resisting motion of an object through the fluid
or resisting movement between layers of fluid
B1
(b) there is no single value for the speed in the pipe

B1
(do not allow unqualified 'constant')
any other comment e.g. volume flow rate takes into account whole flow
B1
(c) (i) pressure $(=\rho g h)=1.0 \times 10^{3} \times 9.8 \times 9.1 \times 10^{-2}$

M1
$=890 \mathrm{~Pa}$
some explanation as to why this is the pressure difference
AO
(ii) $1.5 \times 10^{-6}=\left(\pi \times\left\{0.9 \times 10^{-3}\right\}^{4} \times 890\right) /\left(8 \times \eta \times 13 \times 10^{-2}\right)$

$$
\eta=1.18 \times 10^{-3} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}
$$

C1 A1

6 (a) (i) path taken by a particle of the fluid
B1
(ii) each particle can follow only one path B1 (or in terms of tangent being direction of motion, and only one direction)
(b) (in any tube of flow) $A v=$ constant
when lines converge, A becomes smaller
(so) v must increase

M1
A1
B1

Option M - Medical Physics

7 (a) large/uniform magnetic field applied (to patient)
pulse of radio-frequency waves
Causes H -atoms in patient to resonate or vibrate at Lamour frequency
H -atoms give off radio-frequency waves
RF detected and processed
to give positions of H -atoms
non-uniform magnetic field enables
positions of resonating atoms to be defined
[1 each, any five]
(b) e.g. cost, portability of equipment, time taken
[any sensible suggestions, 1 each, max 2]
B2
8 (a) (i) energy deposited in body
M1
per unit mass of (body) tissue
A1
$\begin{array}{ll}\text { (ii) effects depend on density of deposition of energy/ionisation } & \text { B1 } \\ \text { some radiations cause greater density of ionisation than others } & \text { B1 }\end{array}$
some radiations cause greater density of ionisation than others
B1
(b) Radiation has long-term effects M1
any other relevant point e.g. life shortening, hereditary, cancer inducing A1

9 (a) (i) convex/converging
B1
(ii) focal length $(=100 / 2.5)=40 \mathrm{~cm} \quad$ B1
(b) (i) long sight (hypermetropia) B1
$\begin{array}{ll}\text { (ii) far point is at infinity } & \text { B1 }\end{array}$
$\begin{array}{ll}\text { normal nearpoint is distance } 25 \mathrm{~cm} \text { from eye } & \text { B1 }\end{array}$
$1 / 25-1 / v=1 / 40 \quad$ C1
$v=67 \mathrm{~cm}$
nearpoint is 67 cm in front of the eye A1
(a)

B1
nearpoint is 67 cm in front of the eyeA1

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - JUNE 2005	$\mathbf{9 7 0 2}$	6

Option P - Environmental Physics

10 (a) resources: total energy available/stored in Earth B1
reserves: total energy that can be extracted (economically) B1reserves less than resources because some fossil fuels notrecoverable/too expensiveB1
(b) formation takes place over millions/thousands of years B1
fossil fuels will be exhausted in much less time than this B1
11 (a) induction open CLOSED
ssion power EXHAUST [each column 1 mark, max 4] CLOSED closed B4
(b) (i) power is delivered (by a cylinder) on every stroke M1
(so) smoother power output/torque A1
(ii) improved flow of gases (in and out of cylinder) M1
increases efficiency of engine A1
12 (a) (i) any agent/substance/waste that is detrimental to health B1
or the environmentB1
(ii) 1 man-made: e.g. exhaust gases from cars (anything sensible) B1
2 natural: e.g. volcanic emissions (anything sensible) B1 B1
(b) carbon dioxide absorbed (by plants) with release of oxygen B1
(transpiration) replaces water vapour (in atmosphere) B1
either increasing CO_{2} levels would cause temperature changes
or anything sensible e.g. reference to biodiversity, weather patterns B1
Option T - Telecommunications
13 (a) signal sampled at regular intervals B1
signal voltage converted to a digital number B1
transmitted as a series of groups of pulses B1
pulses could be IR pulses in optic fibre (allow any sensible example) B1any other relevant physics(e.g. sample at twice max frequency, use parallel to series converter)B1
(b) e.g. can be regenerated to remove noise data can be added to check for/correct errors[anything sensible, 1 each, max 2]B2
14 (a) (i) loss of energy/power (in the signal) B1
(ii) unwanted (random) signal B1
(b) (i) power/dB = $10 \lg \left(P_{1} / P_{2}\right)$ C1
$25=10 \lg \left(P /\left(6.0 \times 10^{-19}\right)\right.$ M1
$P=1.9 \times 10^{-16} \mathrm{~W}$ AO
(ii) allowable loss $=10 \lg \left(7.0 \times 10^{-3}\right) /\left(1.9 \times 10^{-16}\right)$ C1
$=136 \mathrm{~dB}$ C1
length $=136 / 1.7=80 \mathrm{~km}$ A1
(d) (i) remains at one point above the Earth orbits Earth above the Equator (1) period of orbit is 24 hours (1) rotates from west to east
(ii) for satellite, time to travel $\left(2 \times 3.6 \times 10^{4} \mathrm{~km}\right)=0.24 \mathrm{~s}$
for fibre, time to travel $18000 \mathrm{~km}=0.06 \mathrm{~s} \rightarrow 0.09 \mathrm{~s}$
advantage: less built-in delay for conversation

