MARK SCHEME for the May/June 2007 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2			2	Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2007	9702	2	
1	(a)	(i)	all p posi <i>(-1 f</i>	ositions (accept 20, 40, 60, 80) marked to within $\pm 5^{\circ}$ tions are 40°, 70°, 90° and 102° for each error or omission)		B2	
		(ii)	allov	v $107^{\circ} \rightarrow 113^{\circ}$		B1	[3]
	(b)	e.g <i>(do</i>	. moi not a	re sensitive at <u>low</u> volumes allow reference to 'accuracy')		B1	[1]
2	(a)	ford	ce <u>pei</u>	r unit positive charge (on a small test charge)		B1	[1]
	(b)	field	d stre	ngth = $(210/\{1.5 \times 10^{-2}\}) = 1.4 \times 10^4 \text{ N C}^{-1}$		A1	[1]
	(c)	(i)	acce	eleration = Eq / m = $(1.4 \times 10^4 \times 1.6 \times 10^{-19}) / (9.1 \times 10^{-31})$ = $2.5 \times 10^{15} \text{ m s}^{-2} (2.46 \times 10^{15})$		C1 C1 A1	[4]
			lowa	ards positive plate / upwards (and normal to plate)		ы	[4]
		(ii)	time	$= 2.4 \times 10^{-9} s$		A1	[1]
	(d)	eith = ½ = 7 (0.7 <i>i.e.</i> or <i>t</i> is	<i>her</i> ve 2 × 2.4 7.1 × ⁷ 71 cm <i>valic</i> 0. ⁻ time	rtical displacement after acceleration for 2.4×10^{-9} s $46 \times 10^{15} \times (2.4 \times 10^{-9})^2$ 10^{-3} m 1 < 0.75 cm and) so will pass between plates 1 conclusion based on a numerical value $75 \times 10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^2$ to travel 'half-way across' plates = 2.47×10^{-9} s		C1 A1 A1 (C1) (A1)	[3]
		(2.4 i.e.	1 ns < <i>valic</i>	2.47 ns) so will pass between plates Conclusion based on a numerical value		(A1)	
3	(a)	ma	ss / v	olume (ratio idea essential)		B1	[1]
	(b)	(i)	mas	$s = Ah\rho$		B1	[1]
		(ii)	pres weig pres	sure = force/area ght (of liquid)/force (on base) = $Ah\rho g$ sure = $h\rho g$		B1 B1 A0	[2]
	(c)	(i)	ratio	e = 1600 or 1600:1		A1	[1]
		(ii)	ratio	$p = {}^{3}\sqrt{1600}$ = 11.7 (allow 12)		C1 A1	[2]

	Page 3			Mark Scheme Sylla		Pape	Paper	
				GCE A/AS LEVEL – May/June 2007	9702	2		
	(d)	(i)	dens	sity of solids and liquids are (about) equal		B1	[1]	
		(ii)	stror rigid <i>(allo</i>	ng forces: fixed volume forces: retains shape / does not flow / little deformatio w 1 mark for fixed volume, fixed shape)	on	B1 B1	[2]	
4	(a)	(i)	(cha = 0 (nge in) potential energy = <i>mgh</i>		C1		
			= 8.7	78 J (<i>allow 8.8</i>)		A1	[2]	
		(ii)	(initi	al) kinetic energy = $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 0.056 \times 18^2$		C1		
			total	= 9.07 J (<i>allow 9.1</i>) kinetic energy = 8.78 + 9.07 = 17.9 J		C1 A1	[3]	
	(b)	kine 17.9	etic eı 9 = ½	hergy = $\frac{1}{2}mv^2$ × 0.056 × v^2 and $v = 25(.3)$ m s ⁻¹		B1	[1]	
	(c)	hor	izonta	al velocity = 18 m s ⁻¹		B1	[1]	
	(d)	(i)	corre (two	ect shape of diagram sides of right-angled triangle with correct orientation)		B1		
		(ii)	angl (<i>for a</i>	e = $41^{\circ} \rightarrow 48^{\circ}$ (allow trig. solution based on diagram) angle $38^{\circ} \rightarrow 41^{\circ}$ or $48^{\circ} \rightarrow 51^{\circ}$, allow 1 mark)		A2	[3]	
5	(a)	(i)	vibra	ation <u>s</u> (in plane) <u>normal</u> to direction of energy propaga	tion	B1	[1]	
		(ii)	vibra	ations in <u>one</u> direction (normal to direction of propagati	on)	B1	[1]	
	(b)	(i)	at (max at (c	displacement) antinodes / where there are no he imum amplitude (of vibration) lisplacement) nodes/where there are heaps, amplitue /minimum	eaps, wave has de of vibration is	8 B1 8 B1		
			dust	is pushed to / settles at (displacement) nodes		B1 B1	[3]	
		(ii)	2.5λ v = f	= 39 cm		C1 C1		
			v = 2 = 3	2.14 × 10° × 15.6 × 10 ⁻² 334 m s⁻¹ (<i>allow 330, not 340</i>)		A1	[3]	
	(c)	Sta <i>eith</i>	tionar ier w	y wave formed by interference / superposition / overla ave travelling down tube and its reflection	p of	B1		
		<i>or</i> spe	tw ed is	vo waves of same (type and) frequency travelling in op the speed of the incident / reflected waves	posite directions	B1 B1	[3]	

	Page 4		Mark Scheme	Syllabus	Paper 2		
			GCE A/AS LEVEL – May/June 2007 9702	9702			
6	(a) (i)	1 to 2 e	otal resistance = 0.16 Ω e.m.f. = <i>either</i> (14 – <i>E</i>) or (<i>E</i> – 14)		A1 A1	[2]	
	(ii)	eithe E =	er 14 – E = 42 × 0.16 or (E – 14) = -42 × 0.16 7.3 V		C1 A1	[2]	
	(b) (i)	char = 12	$rge = It$ $2.5 \times 4 \times 60 \times 60$ $0 = 10^{5} C$		C1	[0]	
		= 1.	.8 × 10° C		A1	[2]	
	(ii)	either energy = EQ or energy = Eit either energy = $14 \times 1.8 \times 10^5$ or energy = $14 \times 12.5 \times 4 \times 3600$ = 2.52×10^6 J	4 × 3600	C1			
				A1	[2]		
	(iii)	(iii) energy = $I^2 Rt$ or Vit and V = IR = 12.5 ² × 0.16 × 4 × 3600			C1		
		$= 3.6 \times 10^5 \text{ J}$	A1	[2]			
	(c) effic	cienc	$y = (2.52 \times 10^6 - 3.6 \times 10^5)/(2.52 \times 10^6)$ = 86%		C1 A1	[2]	
7	(a) β(-d	lecay	/)		B1	[1]	
	(b) γ(-d <i>eith</i>	γ (-decay) either any two of Z, N and A do not change			B1		
	or or	or it is is an electromagnetic wave					
	diaç Do	diagram' Do not give credit for a 'bald' α (-decay)		(B2)			