MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme	Syllabus	Paper						
		GCE A/AS LEVEL – May/June 2008	9702	04						
		Section A								
1	(a) (i) ang by a	 a) (i) angle (subtended) at centre of circle by an arc equal in length to the radius (of the circle) 								
	(ii) ang by t	le swept out per unit time / rate of change of angle he string		M1 A1	[2]					
	(b) friction p 0.72 W 0.72 mo	provides / equals the centripetal force = $md\omega^2$ = $m \times 0.35 \omega^2$		B1 C1						
	$\omega = 4.2$ $n = (\omega)$ = 43	$19 (rad s^{-1})$ $(2\pi) \times 60$ min ⁻¹ (allow 42)		C1 B1 A1	[5]					
	(c) either or so flies ((F = mra	<u>centripetal</u> force increases as <i>r</i> increases <u>centripetal</u> force larger at edge off at edge first v^2 so edge first – treat as special case and allow one <i>r</i>	nark)	M1 A1	[2]					
2	(a) molecul change <i>either</i> or	e(s) rebound from wall of vessel / hits walls in momentum gives rise to impulse / force (many impulses) averaged to give constant force / pre the molecules are in random motion	essure	B1 B1 B1	[3]					
	(b) (i) p =	$\frac{1}{3}\rho < c^2 >$		C1						
	< <i>c</i> ² ; <i>c</i> _{RM} ;	$rac{1}{2} \times 10^{-1} = \frac{1}{3} \times 0.900 \times \sqrt{c}$ $rac{1}{2} = 3.4 \times 10^{5}$ $ ac{1}{3} = 580 \text{ m s}^{-1}$		C1 A1	[3]					
	(ii) <i>eith</i> c _{RM:}	$er < c^2 > \infty$ T or $< c^2 > = 2 \times 3.4 \times 10^5$ s = 830 m s ⁻¹ (allow 820)		C1 A1	[2]					
	(c) c _{RMS} dep so no ef	pends on temperature (alone) fect		B1 B1	[2]					

Page 3			6	Mark Scheme	Syllabus	Paper			
				GCE A/AS LEVEL – May/June 2008	9702	04			
3	(a)	(i)	amp	litude = 0.5 cm		A1	[1]		
		(ii)	perio	d = 0.8 s		A1	[1]		
	(b)	(i)	ω =	$2\pi / T$		C1			
			– corre =	7.65 rad s ect use of $v = \omega \sqrt{(x_0^2 - x^2)}$ $7.85 \times \sqrt{(0.5 \times 10^{-2})^2 - (0.2 \times 10^{-2})^2)}$		B1			
			= (if ta 3.6 : but a	3.6 cm s ⁻¹ ngent drawn or clearly implied (B1) ± 0.3 cm s ⁻¹ (A2) allow 1 mark for > ± 0.3 but $\leq \pm 0.6$ cm s ⁻¹)		A1	[3]		
		(ii)	d =	15.8 cm		A1	[1]		
	(c)	(i)	(con amp	tinuous) loss of energy / reduction in litude (from the oscillating system)	· • · · ·	B1			
			caus visco	sed by force acting in opposite direction to the motion / ous forces	friction /	B1	[2]		
		(ii)	sam line peal	e period / small increase in period displacement always less than that on Fig.3.2 <i>(ignore a</i> < <u>progressively</u> smaller	first T/4)	B1 M1 A1	[3]		
4	(a)	woi fror	rk dor n infir		M1 A1	[2]			
	(b)	(i)	<i>x</i> =	18 cm		A1	[1]		
		(ii)	V _A + (3.6 q = <i>(use</i>	$V_{\rm B} = 0$ × 10 ⁻⁹) / (4 $\pi \varepsilon_0 \times 18 \times 10^{-2}$) + q / (4 $\pi \varepsilon_0 \times 12 \times 10^{-2}$) = 0 -2.4 × 10 ⁻⁹ C of V _A = V _B giving 2.4 × 10 ⁻⁹ C scores one mark))	C1 C1 A1	[3]		
	(c)	field ford ford	B1 B1 B1	[3]					
5	(a)	at <i>t</i> ene 0.1 <i>C</i> :		C1 C1 M1 A0	[3]				
	(b)) use of two capacitors in series in all branches of combination connected into correct parallel arrangement							

Page 4			Mark Scheme	Syllabus	Paper				
			GCE A/AS LEVEL – May/June 2008	9702	04				
6 (a)) parallel (to the field)								
(b)) (i)	torqu 2.1 > <i>F</i> = (use	ue = $F \times d$ × 10^{-3} = $F \times 2.8 \times 10^{-2}$ 0.075 N e of 4.5 cm scores no marks)		C1 A1	[2]			
	(ii)	zero)		A1	[1]			
(c)) F = 0.0 B =	= <i>BIL</i> 75 = = 7.0	$N(\sin\theta)$ $B \times 0.170 \times 4.5 \times 10^{-2} \times 140$ $\times 10^{-2} \text{ T} = 70 \text{ mT}$		C1 M1 A0	[2]			
(d)) (i)	(indເ (maູ	uced) <u>e.m.f.</u> is proportional to / equal to <u>rate of char</u> gnetic) flux (linkage)	nge of	M1 A1	[2]			
	(ii)	char	nge in flux linkage = BAN = 0.070 × 4.5 × 10 ⁻² × 2.8 × 10 ⁻¹ = 0.0123 Wb turns	⁻² × 140	C1				
		indu (Not aver	ced e.m.f = $0.0123 / 0.14$ = 88 mV te: This is a simplified treatment. A full treatment w raging of B cos θ leading to a $\sqrt{2}$ factor)	vould involve the	C1 A1	[3]			
7 (a)) cha	arge is	s quantised / discrete quantities		B1	[1]			
(b)) (i)	para horiz	allel so that the electric field is uniform / constant zontal so that <i>either</i> oil drop will not drift sideways <i>or</i> field is vertical	5	B1	[0]			
			or electric force is equal to weig	jrit.	ы	[2]			
	(ii)	qE : q × 8 q =	= mg 850 / (5.4×10^{-3}) = 7.7 × 10 ⁻¹⁵ × 9.8 4.8 × 10 ⁻¹⁹ C and is negative		C1 C1 A1	[3]			
(c)) cha so	charge changes by 1.6×10^{-19} C between droplets / integral multiples so charge on electron is 1.6×10^{-19} C							
8 (a)) sin mo <u>eq</u> ı	since momentum before combining is zero momenta must be equal and opposite after <u>equal momenta so</u> photon energies equal							
(b)) E	= <i>mc</i> ²	2 10^{-31} \times (3.0 \times 10 ⁸ 2		C1				
		- 9.1 = 8.1	$9 \times 10^{-14} (J)$		C1				
	:	= (8. [^] = 0.5	19 × 10 ⁻¹⁴) / (1.6 × 10 ⁻¹³) 1 MeV		A1	[3]			

Page 5				Mark Scheme					Syllabu	IS	Paper		
		GCE A/AS LEVEL – May/June 2008 9702						04					
							Section	в					
9	(a)	(a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditioning										B1 B1	[2]
	(b)	(i)	two corre	LEDs with ectly ident	opposite fied as re	polaritie d and gi	es <i>(ignore</i> reen	any s	series resi	stors)		M1 A1	[2]
		(ii)	corre henc	ect polarity ce red LEI	r for diode conduct	e to conc s when i	duct ident input (+)v	ified e or v	vice versa			M1 A0	[1]
10	larg nuc	e / si lei ro	trong	(constant about dire) magnet	ic field eld / pree	cess		(1)			B1	
	radi cau	o fre ses r	quen reson	ncy / r.f. pu nance in ni be Larmor	lse uclei , nuc	clei abso	rb energy	/	(1)			B1	
	on r dete non allov	ected -unif ws fo	ation ation and orm f or pos	/ nuclei de processe field (supe sition of nu	e-excite d rimposed iclei to be	emit (pul	se of) r.f. ined		(1)			B1 B1 B1 B1	
	апо (В6	plus	any	two extra	details, 1	e change each, m	ea ax 2)		(1)			B2	[8]
11	(a)	(i)	frequ in sy	uency of c nchrony v	arrier wav /ith <u>displa</u>	ve varies <u>icement</u>	of inform	ation	signal			M1 A1	[2]
		(ii)	1. 2.	zero (acce upper limi	ept consta t 530 kHz	ant)						B1 B1	[1]
				changes u	ipper limi	$t \rightarrow lowe$	er limit \rightarrow	uppe	r limit at 80)00 s ^{−1}		B1	[3]
	(b)	e.g.	more	e radio sta e complex	tions requelectroni	uired / sł cs	norter ran	ge					
		(any	large / two	er bandwid sensible s	Ith require suggestion	ed ns, 1 ea	ch)					B2	[2]
12	(a)	(i)	picki from	ing up of s a second	ignal in o (nearby)	ne cable cable	•					M1 A1	[2]
		(ii)	<u>rand</u> that <i>(allo</i>	<u>lom</u> (unwa masks / a w this mai	nted) sigi dded to / ˈk in (i) or	nal / pow interfere • (ii))	/er s with / d	istorts	s transmitte	ed signal		B1 B1	[2]
	(b)	if P 30 P = loss leng	is po = 10 = 6.5 = alon]th =	wer at rec $\log(P / (6.5 \times 10^{-3} \text{ W}))$ $\log \text{ cable } = $ = 6.0 / 0.2	eiver, × 10 ⁻⁶) 10lg({26 6.0 dB = 30 km	3 × 10 ^{−3} }	/ {6.5 × 1	0 ⁻³ })				C1 C1 C1 C1 A1	[5]