MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/04
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2008	9702	04

Section A

1 (a) (i) angle (subtended) at centre of circle B1
by an arc equal in length to the radius (of the circle) B1
(ii) angle swept out per unit time / rate of change of angle M1by the stringA1
(b) friction provides / equals the centripetal force

$$
0.72 W=m d \omega^{2}
$$C1

$0.72 \mathrm{mg}=m \times 0.35 \omega^{2}$
$\omega=4.49\left(\mathrm{rad} \mathrm{s}^{-1}\right)$ C1
$n=(\omega / 2 \pi) \times 60$ B1$=43 \mathrm{~min}^{-1}$ (allow 42)A1
(c) either centripetal force increases as r increases or centripetal force larger at edge M1
so flies off at edge first

$$
\text { (} F=m r \omega^{2} \text { so edge first - treat as special case and allow one mark) }
$$

2 (a) molecule(s) rebound from wall of vessel / hits walls B1
change in momentum gives rise to impulse / force B1either (many impulses) averaged to give constant force / pressureor the molecules are in random motionB1
(b) (i) $p=\frac{1}{3} \rho<c^{2}>$C1
$1.02 \times 10^{5}=\frac{1}{3} \times 0.900 \times\left\langle c^{2}\right\rangle$

$$
\left\langle c^{2}\right\rangle=3.4 \times 10^{5}
$$ C1

$C_{\text {RMS }}=580 \mathrm{~m} \mathrm{~s}^{-1}$ A1
(ii) either $\left\langle c^{2}\right\rangle \propto T$ or $\left\langle c^{2}\right\rangle=2 \times 3.4 \times 10^{5}$ C1
$c_{\text {RMS }}=830 \mathrm{~m} \mathrm{~s}^{-1}$ (allow 820) A1
(c) $C_{\text {RMS }}$ depends on temperature (alone) B1
so no effect B1
[3]
[3][2]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2008	9702	04

3 (a) (i) amplitude $=0.5 \mathrm{~cm}$
(ii) period $=0.8 \mathrm{~s}$
(b) (i) $\omega=2 \pi / T$
$=7.85 \mathrm{rad} \mathrm{s}^{-1}$
correct use of $v=\omega \sqrt{ }\left(x_{0}^{2}-x^{2}\right)$
$=7.85 \times \sqrt{ }\left(\left\{0.5 \times 10^{-2}\right\}^{2}-\left\{0.2 \times 10^{-2}\right\}^{2}\right)$ $=3.6 \mathrm{~cm} \mathrm{~s}^{-1}$
(if tangent drawn or clearly implied (B1) $3.6 \pm 0.3 \mathrm{~cm} \mathrm{~s}^{-1}$
but allow 1 mark for $> \pm 0.3$ but $\leqslant \pm 0.6 \mathrm{~cm} \mathrm{~s}^{-1}$)
(ii) $d=15.8 \mathrm{~cm}$
(c) (i) (continuous) loss of energy / reduction in amplitude (from the oscillating system)
caused by force acting in opposite direction to the motion / friction / viscous forces
(ii) same period / small increase in period
line displacement always less than that on Fig. 3.2 (ignore first $T / 4$) peak progressively smaller

4 (a) work done moving unit positive charge
(b) (i) $x=18 \mathrm{~cm}$
(ii) $V_{A}+V_{B}=0$
$\left(3.6 \times 10^{-9}\right) /\left(4 \pi \varepsilon_{0} \times 18 \times 10^{-2}\right)+q /\left(4 \pi \varepsilon_{0} \times 12 \times 10^{-2}\right)=0$ C1 $q=-2.4 \times 10^{-9} \mathrm{C}$ A1
(use of $V_{A}=V_{B}$ giving $2.4 \times 10^{-9} \mathrm{C}$ scores one mark)
$\begin{array}{ll}\text { (c) field strength }=(-) \text { gradient of graph } & \text { B1 } \\ \text { force }=\text { charge } \times \text { gradient } / \text { field strength or force } \propto \text { gradient } & \text { B1 } \\ \text { force largest at } x=27 \mathrm{~cm} & \text { B1 }\end{array}$

5 (a) at $t=1.0 \mathrm{~s}, \mathrm{~V}=2.5 \mathrm{~V} \quad \mathrm{C} 1$ energy $=1 / 2 C V^{2}$ C1
$0.13=1 / 2 \times C \times\left(8.0^{2}-2.5^{2}\right)$ M1
$C=4500 \mu \mathrm{~F}$ A0
(b) use of two capacitors in series in all branches of combination connected into correct parallel arrangement

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2008	9702	04

6 (a) parallel (to the field)
B1 [1]
(b) (i) torque $=F \times d$
$2.1 \times 10^{-3}=F \times 2.8 \times 10^{-2} \quad$ C1
$F=0.075 \mathrm{~N}$ A1
(use of 4.5 cm scores no marks)
(ii) zero
(c) $F=B I L N(\sin \theta)$

C1
$0.075=B \times 0.170 \times 4.5 \times 10^{-2} \times 140$ M1
$B=7.0 \times 10^{-2} \mathrm{~T}=70 \mathrm{mT}$
A0
(d) (i) (induced) e.m.f. is proportional to / equal to rate of change of M1 (magnetic) flux (linkage) A1
(ii) change in flux linkage $=B A N$

$$
\begin{aligned}
& =0.070 \times 4.5 \times 10^{-2} \times 2.8 \times 10^{-2} \times 140 \\
& =0.0123 \mathrm{~Wb} \text { turns }
\end{aligned}
$$

induced e.m.f $=0.0123 / 0.14$

$$
=88 \mathrm{mV}
$$

(Note: This is a simplified treatment. A full treatment would involve the averaging of $B \cos \theta$ leading to a $\sqrt{2}$ factor)

7 (a) charge is quantised / discrete quantities
B1
(b) (i) parallel so that the electric field is uniform / constant
horizontal so that either oil drop will not drift sideways
or field is vertical
or electric force is equal to weight
B1
(ii) $q E=m g \quad$ C1
$q \times 850 /\left(5.4 \times 10^{-3}\right)=7.7 \times 10^{-15} \times 9.8$ C1
$q=4.8 \times 10^{-19} \mathrm{C}$ and is negative A1
(c) charge changes by $1.6 \times 10^{-19} \mathrm{C}$ between droplets / integral multiples M1 so charge on electron is $1.6 \times 10^{-19} \mathrm{C}$ A0

8 (a) since momentum before combining is zero B1
momenta must be equal and opposite after
B1
equal momenta so photon energies equal
B1

$$
\text { (b) } \begin{aligned}
E & =m c^{2} \\
& =9.1 \times 10^{-31} \times\left(3.0 \times 10^{8}\right)^{2} \\
& =8.19 \times 10^{-14}(\mathrm{~J}) \\
& =\left(8.19 \times 10^{-14}\right) /\left(1.6 \times 10^{-13}\right) \\
& =0.51 \mathrm{MeV}
\end{aligned}
$$

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL - May/June 2008	9702	04

Section B

9 (a) blocks labelled sensing device / sensor / transducer B1
processor / processing unit / signal conditioning B1
(b) (i) two LEDs with opposite polarities (ignore any series resistors) M1
correctly identified as red and green A1
(ii) correct polarity for diode to conduct identified M1
hence red LED conducts when input (+)ve or vice versa A0
10 large / strong (constant) magnetic field B1nuclei rotate about direction of field / precessradio frequency / r.f. pulseB1
causes resonance in nuclei, nuclei absorb energy (1)
(pulse) is at the Larmor frequency(1)
on relaxation / nuclei de-excite emit (pulse of) r.f. B1
detected and processed B1
non-uniform field (superimposed) B1
allows for position of nuclei to be determined B1
and for location of detection to be changed (1)(B6 plus any two extra details, 1 each, max 2)B2
11 (a) (i) frequency of carrier wave varies M1
in synchrony with displacement of information signal A1
(ii) 1. zero (accept constant) B1
2. upper limit 530 kHz B1
lower limit 470 kHz B1
changes upper limit \rightarrow lower limit \rightarrow upper limit at $8000 \mathrm{~s}^{-1}$ B1
(b) e.g. more radio stations required / shorter range
more complex electronics
larger bandwidth required
(any two sensible suggestions, 1 each)
(ii) random (unwanted) signal / power B1that masks / added to / interferes with / distorts transmitted signalB1[2](allow this mark in (i) or (ii))
(b) if P is power at receiver,
$30=10 \lg \left(P /\left(6.5 \times 10^{-6}\right)\right.$ C1
$P=6.5 \times 10^{-3} \mathrm{~W}$ C1
loss along cable $=10 \lg \left(\left\{26 \times 10^{-3}\right\} /\left\{6.5 \times 10^{-3}\right\}\right)$ C1
$=6.0 \mathrm{~dB}$ C1length $=6.0 / 0.2=30 \mathrm{~km}$A1

