As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.
This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction
First variant Question Paper
Second variant Question Paper

Mark Scheme

Principal Examiner's Report

Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?
Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

First variant Mark Scheme

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	21

1 (a) (i) micrometer (screw gauge) / travelling microscope B1
(ii) either ohm-meter or voltmeter and ammeter or multimeter/avo on ohm setting B1
(iii) either (calibrated) c.r.o. or a.c. voltmeter and $\times \sqrt{ } 2$ B1
(b) density $=$ mass $/$ volume

C1

C1

C1

C1

$=580 / 6^{3}=2.685 \mathrm{~g} \mathrm{~cm}^{-3} \quad \ldots$ (allow $2.68,2.69,2.7$)

$=580 / 6^{3}=2.685 \mathrm{~g} \mathrm{~cm}^{-3} \quad \ldots$ (allow $2.68,2.69,2.7$)

$=580 / 6^{3}=2.685 \mathrm{~g} \mathrm{~cm}^{-3} \quad \ldots$ (allow $2.68,2.69,2.7$)

$=580 / 6^{3}=2.685 \mathrm{~g} \mathrm{~cm}^{-3} \quad \ldots$ (allow $2.68,2.69,2.7$) A1 A1 A1 A1

$\%$ uncertainty in mass $=(10 / 580) \times 100=1.7 \%$

$\%$ uncertainty in mass $=(10 / 580) \times 100=1.7 \%$

$\%$ uncertainty in mass $=(10 / 580) \times 100=1.7 \%$

$\%$ uncertainty in mass $=(10 / 580) \times 100=1.7 \%$ C1 C1 C1 C1
$\%$ uncertainty in volume $=3 \times(0.1 / 6) \times 100=5.0 \%$
$\%$ uncertainty in volume $=3 \times(0.1 / 6) \times 100=5.0 \%$
$\%$ uncertainty in volume $=3 \times(0.1 / 6) \times 100=5.0 \%$
$\%$ uncertainty in volume $=3 \times(0.1 / 6) \times 100=5.0 \%$ C1 C1 C1 C1
uncertainty in density $=0.18 \mathrm{~g} \mathrm{~cm}^{-3}$
uncertainty in density $=0.18 \mathrm{~g} \mathrm{~cm}^{-3}$
uncertainty in density $=0.18 \mathrm{~g} \mathrm{~cm}^{-3}$
uncertainty in density $=0.18 \mathrm{~g} \mathrm{~cm}^{-3}$ density $=2.7 \pm 0.2 \mathrm{~g} \mathrm{~cm}^{-3}$ A1 A1 A1 A1
(answer $2.69 \pm 0.09 \mathrm{~g} \mathrm{~cm}^{-3}$ scores 4 marks)
(answer $2.69 \pm 0.09 \mathrm{~g} \mathrm{~cm}^{-3}$ scores 4 marks)
(answer $2.69 \pm 0.09 \mathrm{~g} \mathrm{~cm}^{-3}$ scores 4 marks)
(answer $2.69 \pm 0.09 \mathrm{~g} \mathrm{~cm}^{-3}$ scores 4 marks)
2 (a) ball moving in opposite direction (after collision) B1
(b) (i) change in momentum $=1.2(4.0+0.8)$ C2
(correct values, 1 mark; correct sign \{values added\}, 1 mark) $=5.76 \mathrm{~N} \mathrm{~s}$...(allow 5.8) A1
(ii) force $=\Delta p / \Delta t$ or $m \Delta v / \Delta t$ C1
$=5.76 / 0.08$ or $1.2 \times 4.8 / 0.08$
$=5.76 / 0.08$ or $1.2 \times 4.8 / 0.08$ C1 C1
$=72 \mathrm{~N}$
$=72 \mathrm{~N}$ A1 A1
(c) $5.76=3.6 \times V$ C1
$V=1.6 \mathrm{~m} \mathrm{~s}^{-1}$ A1
(d) either speed of approach $=4.0 \mathrm{~m} \mathrm{~s}^{-1}$ and

speed of separation $=2.4 \mathrm{~m} \mathrm{~s}^{-1}$

speed of separation $=2.4 \mathrm{~m} \mathrm{~s}^{-1}$

speed of separation $=2.4 \mathrm{~m} \mathrm{~s}^{-1}$

speed of separation $=2.4 \mathrm{~m} \mathrm{~s}^{-1}$ M1 M1 M1 M1

not equal and so inelastic

not equal and so inelastic

not equal and so inelastic A1 A1 A1
or \quad kinetic energy before $=9.6 \mathrm{~J}$ and
or \quad kinetic energy before $=9.6 \mathrm{~J}$ and
or \quad kinetic energy before $=9.6 \mathrm{~J}$ and kinetic energy after collision $=4.99 \mathrm{~J}$ kinetic energy after collision $=4.99 \mathrm{~J}$ kinetic energy after collision $=4.99 \mathrm{~J}$ M1 M1 M1
kinetic energy after is less / not conserved so inelastic
kinetic energy after is less / not conserved so inelastic
kinetic energy after is less / not conserved so inelastic A1 A1 A1
[2]
[3][2]
3 (a) product of (magnitude of one) force and distance between forces M1
reference to either perpendicular distance between forces or line of action of forces and perpendicular distance A1
(b) (i) 90° B1
(ii) $130=F \times 0.45$ (allow e.c.f. for angle in (i)) C1 $F=290 \mathrm{~N}$ A1
(allow 1 mark only if angle stated in (i) is not used in (iii)

First variant Mark Scheme

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	21

4 (a) (i) change of shape / size / length / dimension C1
when (deforming) force is removed, returns to original shape / size A1
(ii) $L=k e$ B1
(b) $2 e$ B1
$1 / 2 k$...(allow e.c.f. from extension) B1
$1 / 2 e$ and $2 k$ B1
$\frac{3}{2} e \quad .$. (allow e.c.f. from extension in part 2) B1
$\frac{2}{3} k$...(allow e.c.f. from extension) B1
5 (a) either phase difference is $\pi \mathrm{rad} / 180^{\circ}$or path difference (between waves from S_{1} and S_{2}) is $1 / 2 \lambda /(n+1 / 2) \lambda$. B1either same amplitude / intensity at Mor ratio of amplitudes is $1.28 /$ ratio of intensities is 1.28^{2}.................. B1
(b) path difference between waves from S_{1} and $\mathrm{S}_{2}=28 \mathrm{~cm}$ B1
wavelength changes from 33 cm to 8.25 cm B1
so two minima B1

6 (a) (i) $E=V / d$

6 (a) (i) $E=V / d$ C1 C1

(a) (i) $\begin{aligned} & E=V / d \ldots \ldots \ldots \ldots \\ &=350 /\left(2.5 \times 100^{-2}\right)\end{aligned}$

(a) (i) $\begin{aligned} & E=V / d \ldots \ldots \ldots \ldots \\ &=350 /\left(2.5 \times 100^{-2}\right)\end{aligned}$

(a) (i) $\begin{aligned} & E=V / d \ldots \ldots \ldots \ldots \\ &=350 /\left(2.5 \times 100^{-2}\right)\end{aligned}$

(a) (i) $\begin{aligned} & E=V / d \ldots \ldots \ldots \ldots \\ &=350 /\left(2.5 \times 100^{-2}\right)\end{aligned}$

(a) (i) $\begin{aligned} & E=V / d \ldots \ldots \ldots \ldots \\ &=350 /\left(2.5 \times 100^{-2}\right)\end{aligned}$
$=1.4 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1}$
$=1.4 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1}$ A1 A1

(ii) force $=E q$

(ii) force $=E q$

(ii) force $=E q$

(ii) force $=E q$

(ii) force $=E q$ C1 C1 C1 C1 C1

$=1.4 \times 10^{4} \times 1.6 \times 10^{-19}$

$=1.4 \times 10^{4} \times 1.6 \times 10^{-19}$ M1 M1 M1 M1 M1
$=2.24 \times 10^{-15}$
$=2.24 \times 10^{-15}$
$=2.24 \times 10^{-15}$
$=2.24 \times 10^{-15}$
$=2.24 \times 10^{-15}$ AO AO AO AO AO
(b) (i) $F=m a$ C1
$a=\left(2.24 \times 10^{-15}\right) /\left(9.1 \times 10^{-31}\right)$
$=2.46 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2} \quad \ldots\left(\right.$ allow $\left.2.5 \times 10^{5}\right)$ A1
(ii) $s=1 / 2 a t^{2}$ C1
$2.5 \times 10^{-2}=1 / 2 \times 2.46 \times 10^{15} \times t^{2}$$t=4.5 \times 10^{-9} \mathrm{~s}$A1
(c) either gravitational force is normal to electric forceor electric force horizontal, gravitational force verticalB2

$$
\text { special case: force/acceleration due to electric field } \gg \text { force/acceleration }
$$

$$
\text { due to gravitational field, allow } 1 \text { mark }
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	21

7 (a) (i) R... B1
(ii) $0.5 R$ B1
(iii) 2.5R ...(allow e.c.f. from (ii)) B1 B
(b) (i) $I_{1}+I_{2}=I_{3}$ B1

(b) (i) $I_{1}+I_{2}=I_{3}$
\qquad
(ii) $E_{2}=I_{3} R+I_{2} R$ B1
(iii) $E_{1}-E_{2}=2 I_{1} R-I_{2} R$ B1 [1][1]
1]

8 (a) rate of decay / activity / decay (of nucleus) is not affected by external factors / environment / surroundings (If states specific factor(s), rather than giving general statement above, then give 2 marks for two stated factors, but 1 mark only if one factor stated)
(b) (i) gamma / γ... B1
(ii) alpha / α.. B1
(iii) gamma $/ \gamma$... B1
(iv) beta / β... B1

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	22

1 (a) e.g. time (s), current (A), temperature (K), amount of substance (mol), luminous intensity (cdl)
1 each, max 3 B3
[3]
(b) density = mass / volume C1
unit of density: $\mathrm{kg} \mathrm{m}^{-3}$ C1
$\begin{array}{ll}\text { unit of acceleration: } & \mathrm{m} \mathrm{s}^{-2} \\ \text { unit of pressure: } & \mathrm{kg} \mathrm{m}^{-3} \mathrm{~m} \mathrm{~s}^{-2} \mathrm{~m}\end{array}$. C1
$\begin{array}{ll}\text { unit of pressure: } & \begin{array}{ll}\mathrm{kg} \mathrm{m}^{-3} \mathrm{~m} \mathrm{~s}^{-2} \\ \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}\end{array}\end{array}$ B1
(allow 4/5 for solution in terms of only dimensions) B1
2 (a) 2.4 s A1

(answer 15.6 scores 2 marks
(b) in (b) and (c), allow answers as (+) or (-)
(b) in (b) and (c), allow answers as (+) or (-)
(b) in (b) and (c), allow answers as (+) or (-) recognises distance travelled as area under graph line recognises distance travelled as area under graph line recognises distance travelled as area under graph line C1 C1 C1
height $=(1 / 2 \times 2.4 \times 9.0)-(1 / 2 \times 1.6 \times 6.0)$
height $=(1 / 2 \times 2.4 \times 9.0)-(1 / 2 \times 1.6 \times 6.0)$
height $=(1 / 2 \times 2.4 \times 9.0)-(1 / 2 \times 1.6 \times 6.0)$ C1 C1 C1
$=6.0 \mathrm{~m}$ (allow 6 m)
$=6.0 \mathrm{~m}$ (allow 6 m)
$=6.0 \mathrm{~m}$ (allow 6 m) A1 A1 A1
(answer 15.6 scores 2 marks
(answer 15.6 scores 2 marks
(answer 15.6 scores 2 marks
(a) 2.4 s
(a) 2.4 s
(a) 2.4 s
(a) 2.4 sanswer 10.8 or 4.8 scores 1 mark)
answer 10.8 or 4.8 scores 1 mark)

$$
\text { alternative solution: } \begin{aligned}
s & =u t-1 / 2 a t^{2} \\
& =(9 \times 4)-1 / 2 \times(9 / 2.4) \times 4^{2} \\
& =6.0 \mathrm{~m}
\end{aligned}
$$

(answer 66 scores 2 marks
answer 36 or 30 scores 1 mark)
(c) (i) change in momentum $=0.78(9.0+4.2) \quad$ (allow $4.2 \pm 0.2)$ C1
$=10.3 \mathrm{~N} \mathrm{~s}$ (allow 10 N s) A1
(ii) force $=\Delta p / \Delta t \quad$ or $\quad m \Delta v / \Delta t$ C1
$=10.3 / 3.5 / 0.08$

$$
=2.9 \mathrm{~N}
$$

A1
(d) (i) 2.9 N A1
(ii) $g=$ weight $/$ mass C1

$$
\begin{aligned}
& =2.9 / 0.78 \\
& =3.7 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$ A1

3 (a) product of (magnitude of one) force and distance between forces M1
reference to either perpendicular distance between forces or line of action of forces \& perpendicular distance A1
(b) (i) 90° B1
(ii) $130=F \times 0.45$ (allow e.c.f. for angle in (i)) C1
$F=290 \mathrm{~N}$ A1(allow 1 mark only if angle stated in (i) is not used in (ii))

Second variant Mark Scheme

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	22

4 (a) (i) change of shape / size / length / dimension ... C1 when (deforming) force is removed, returns to original shape / size A1
\qquad
(b) $2 e$.. B1
$1 ⁄ 2 k$ (allow e.c.f. from extension) ... B1
$1 / 2 e$ and $2 k$.. B1
$\frac{3}{2} e \quad$ (allow e.c.f. from extension in part 2) .. B1
$\frac{2}{3} k$ (allow e.c.f. from extension) ... B1

$=\left(650 \times 10^{-9} \times 2.4\right) /\left(0.86 \times 10^{-3}\right)$
$=1.8 \mathrm{~mm}$
A1
(allow 2 marks from inappropriate estimate if answer is in range $10 \mathrm{~cm} \rightarrow 0.1 \mathrm{~mm}$)
(c) no longer complete destructive interference /
amplitudes no longer completely cancel ... M1
so dark fringes are lighter A1

$$
\begin{aligned}
& =350 /\left(2.5 \times 10^{-2}\right) \\
& =1.4 \times 10^{4} \mathrm{~N} \mathrm{C}^{-1} \\
& \text { A1 }
\end{aligned}
$$

$=2.24 \times 10^{-15}$
AO

$2.5 \times 10^{-2}=1 / 2 \times 2.46 \times 10^{15} \times t^{2}$
$t=4.5 \times 10^{-9} \mathrm{~s}$
A1

[^0]| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | GCE A/AS LEVEL - May/June 2009 | 9702 | 22 |

7 (a) ∞ A1
$2 R$ A1
R A1[3]
(b) (i) $I_{1}+I_{3}=I_{2}+I_{4}$ A1 [1]
(ii) $E_{2}-E_{1}=I_{3} R$ A1[1]
(iii) $E_{2}=I_{3} R+2 I_{4} R$ A1[1]
8 (a) rate of decay / activity / decay (of nucleus) is not affected by external factors / environment / surroundings B2 (If states specific factor(s), rather than giving general statement above, then give 2 marks for two stated factors, but 1 mark only if one factor stated)
(b) (i) gamma / γ B1[1]
(ii) alpha / α B1[1]
(iii) gamma / γ B1[1]
(iv) beta / β B1[1]

[^0]: (c) either gravitational force is normal to electric force or electric force horizontal, gravitational force vertical B2
 special case: force/acceleration due to electric field >> force/acceleration due to gravitational field, allow 1 mark

