MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS
 9702/04
 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	04

Section A

1 (a) force per unit mass (ratio idea essential)
(b) $g=G M / R^{2}$

C1
$8.6 \times\left(0.6 \times 10^{7}\right)^{2}=M \times 6.67 \times 10^{-11}$
C1
$M=4.6 \times 10^{24} \mathrm{~kg}$
A1
(c) (i) either potential decreases as distance from planet decreases
or potential zero at infinity and X is closer to zero
or potential $\alpha-1 / r$ and Y more negative M1 so point Y is closer to planet.
(ii) idea of $\Delta \phi=1 / 2 \nu^{2}$
$(6.8-5.3) \times 10^{7}=1 / 2 V^{2}$ $v=5.5 \times 10^{3} \mathrm{~ms}^{-1}$

2 (a) either the half-life of the source is very long
or decay constant is very small
or half-life >> 40 days
or decay constant $\ll 0.02$ day $^{-1}$
B1
(b) number of helium atoms $=3.5 \times 10^{6} \times 40 \times 24 \times 3600$
either $p V=N k T$ or $p V=n R T$ and $n=N / N_{\mathrm{A}}$
$1.5 \times 10^{5} \times V=1.21 \times 10^{13} \times 1.38 \times 10^{-23} \times 290$
$V=3.2 \times 10^{-13} \mathrm{~m}^{3}$
(if uses $T /{ }^{\circ} \mathrm{C}$ or $n=1$ or $n=4$, then 1 mark max for calculation of number of atoms)

3 (a) increasing separation of molecules / breaking bonds between molecules
(allow atoms/molecules, overcome forces)
doing work against atmosphere (during expansion)
B1
(b) (i) 1 either bubbles produced at a constant rate / mass evaporates/lost at constant rate or find mass loss more than once and this rate should be constant or temperature of liquid remains constant
2 to allow/cancel out/eliminate/compensate for heat losses (to atmosphere) (do not allow 'prevent'/'stop')
(ii) use of power \times time $=$ mass \times specific latent heat
$(70-50) \times 5 \times 60=(13.6-6.5) \times L$ C1
$L=845 \mathrm{~J} \mathrm{~g}^{-1}$

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	04

4 (a) (i) ($\theta=) \omega t$ (allow any subject if all terms given)
(ii) $\quad(\mathrm{SQ}=) r \sin \omega t$ (allow any subject if all terms given)
(b) this is the solution of the equation $a=-\omega^{2} x$ M1 $a=-\omega^{2} x$ is the (defining) equation of s.h.m. A1
(c) (i) $f=\omega / 2 \pi$

C1

$$
\begin{aligned}
& =4.7 / 2 \pi \\
& =0.75 \mathrm{~Hz}
\end{aligned}
$$

(ii) $v=r \omega$ (r must be identified)

$$
\begin{aligned}
& =4.7 \times 12 \\
& =56 \mathrm{~cm} \mathrm{~s}^{-1}
\end{aligned}
$$

5 (a) (i) ratio of charge (on body) and its potential
B1
(do not allow reference to plates of a capacitor)
(ii) (potential at surface of sphere $=$) $V=Q / 4 \pi \varepsilon_{0} r$ M1 $C=Q / V=4 \pi \varepsilon_{0} r$ A0
(b) (i) $C=4 \times \pi \times 8.85 \times 10^{-12} \times 0.36$

$$
\begin{equation*}
=4.0 \times 10^{-11} \mathrm{~F} \text { (allow } 1 \text { s.f.) } \tag{1}
\end{equation*}
$$

A1
(ii) $Q=C V$

$$
\begin{aligned}
& =4.0 \times 10^{-11} \times 7.0 \times 10^{5} \\
& =2.8 \times 10^{-5} \mathrm{C}
\end{aligned}
$$

A1
$\begin{array}{ll}\text { (c) plastic is an insulator / not a conductor / has no free electrons } \\ \text { charges do not move (on an insulator) } \\ \text { either } \quad \text { so no single value for the potential } & \text { B1 } \\ \text { or charge cannot be considered to be at centre } & \text { B1 } \\ & \text { B1 }\end{array}$
(d) either energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $C=Q / V$ C1

$$
\begin{aligned}
\text { energy } & \left.=1 / 2 \times 4 \times 10^{-11} \times\left\{\left(7.0 \times 10^{5}\right)^{2}-\left(2.5 \times 10^{5}\right)^{2}\right)\right\} \\
& =8.6 \mathrm{~J}
\end{aligned}
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	04

6 (a) unit of magnetic flux density / magnetic field strength B1
(uniform) field normal to wire carrying current of 1 A M1
giving force (per unit length) of $1 \mathrm{Nm}^{-1}$ A1
(b) (i) force on magnet / balance is downwards (so by Newton's third law) B1 M1
pole P is a north pole A1
(ii) $F=B I L$ and $F=m g$ (g missing, then $0 / 3$ in (ii)) C1
$2.3 \times 10^{-3} \times 9.8=B \times 2.6 \times 4.4 \times 10^{-2}(g=10$, loses this mark $)$
$2.3 \times 10^{-3} \times 9.8=B \times 2.6 \times 4.4 \times 10^{-2}(g=10$, loses this mark $)$ C1 C1
$2.3 \times 10^{-3} \times$
$B=0.20 \mathrm{~T}$
$2.3 \times 10^{-3} \times$
$B=0.20 \mathrm{~T}$ A1 A1
(c) reading for maximum current $=2.3 \times \sqrt{ } 2$ C1
total variation $=2 \times 2.3 \times \sqrt{ } 2$

$$
=6.5 \mathrm{~g}
$$

force on wire is upwards
force on wire is upwards[3]
[3]
7 coil in series with meter (do not allow inclusion of a cell) B1
push known pole into coil B1
observe current direction (not reading) B1
(induced) field / field from coil repels magnet B1
either states rule to determine direction of magnetic field in coilor reversing magnet direction gives opposite deflection on meterB1
direction of induced current such as to oppose the change producing it B18 (a) wave theory predicts any frequency would give rise to emission of electronM1
if exposure time is sufficiently long A1
photon has (specific value of) energy dependent on frequency M1
emission if energy greater than threshold / work function / energy to removeelectron from surfaceA1
(b) photon is packet/quantum of energy M1
of electromagnetic radiation A1
(photon) energy $=h \times$ frequency B1
every particle has an (associated) wavelength B1
wavelength $=h / p$ M1
where p is the momentum (of the particle) A1
[3][3]
9 (a) (i) $\Delta N / \Delta t$ (ignore any sign)B1
(ii) $\Delta N / N$ (ignore any sign) B1
(b) source must decay by 8% C1
$A=A_{0} \exp \left(-\ln 2 t / T_{1 / 2}\right)$ or $A / A_{0}=1 /\left(2^{t / T}\right)$ C1
$0.92=\exp (-\ln 2 \times t / 5.27)$ or $0.92=1 /\left(2^{t / 5.27}\right)$ C1
$t=0.634$ years$=230$ daysA1(allow 2 marks for $A / A_{0}=0.08$, answer 7010 daysallow 1 mark for $A / A_{0}=0.12$, answer 5880 days)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	04

Section B

10 (a) (part of) the output is added to /returned to / mixed with the input
B1 and is out of phase with the input / fed to inverting input

B1
(b) $25=1+(120 / R)$

C1
$R=5 \mathrm{k} \Omega$
A1
(c) (i) $-2 V$

A1
(ii) 9 V

11 (a) pulse of ultrasound
reflected at boundaries / boundary
received / detected (at surface) by transducer
signal processed and displayed
time between transmission and receipt of pulse gives (information about) depth of boundary
reflected intensity gives information as to nature of boundary
(b) (i) coefficient $=\left(Z_{2}-Z_{1}\right)^{2} /\left(Z_{2}+Z_{1}\right)^{2}$

$$
\begin{array}{ll}
=(6.3-1.7)^{2} /(6.3+1.7)^{2} & \mathrm{C} 1 \\
=0.33 \text { (unit quoted, then }-1) & \mathrm{A} 1
\end{array}
$$

(ii) fraction $=\exp (-\mu x)$

$$
\begin{aligned}
& =\exp \left(-23 \times 4.1 \times 10^{-2}\right) \\
& =0.39
\end{aligned}
$$

(iii) intensity $=0.33 \times 0.39^{2} \times I$

$$
=0.050 I
$$

(do not allow e.c.f. from (i) and (ii) if these answers are greater than 1)

12 (a) loss / reduction in power / energy / voltage/ amplitude (of the signal)
B1
(b) (i) attenuation $=125 \times 7=875 \mathrm{~dB}$

A1
(ii) 20 amplifiers
gain $=20 \times 43=860 \mathrm{~dB}$
A1
(c) gain $=10 \lg \left(P_{1} / P_{2}\right)$

C1
overall gain $=-15 \mathrm{~dB} /$ attenuation is 15 dB C1
$-15=10 \lg (P / 450)$
$P=14 \mathrm{~mW}$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9702	04

13 (a) switch; tuning cct; (r.f.) amplifier; demodulator; serial-to-parallel converter; DAC; (a.f.) amplifier mark as 2 sets of 2 marks each

5 blocks identified correctly B2 (each error or omission, deduct 1 mark) 5 blocks in correct order B2
(4 or 3 blocks in correct order, allow 1 mark)
(b) phone transmits signal (to identify itself)
signal received by (several) base stations
transferred to cellular exchange
computer selects base station with strongest signal (1)
assigns a (carrier) frequency
(1)
(any four, 1 each, max 4)
B4 [4]

