MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	21

$1 \quad 10^{-9}$ B1
C B1
mega B1
tera B1
2 (a) scalar B1
scalar B1
vector B1
(b) (i) 1 gradient (of graph) is the speed/velocity (can be scored here or in 2). B1
initial gradient is zero B1
2 gradient (of line/graph) becomes constant B1[1]
(ii) speed $=(2.8 \pm 0.1) \mathrm{m} \mathrm{s}^{-1}$ A2
(if answer $> \pm 0.1$ but $\leq \pm 0.2$, then award 1 mark)
(iii) curved line never below given line and starts from zero B1
continuous curve with increasing gradient B1
line never vertical or straight B1[2][3]
3 (a) either energy (stored)/work done represented by area under graph or energy $=$ average force \times extension B1
energy $=1 / 2 \times 180 \times 4.0 \times 10^{-2}$ C1
$=3.6 \mathrm{~J}$ A1
(b) (i) either momentum before release is zero M1
so sum of momenta (of trolleys) after release is zero A1
or \quad force $=$ rate of change of momentum (M1)
force on trolleys equal and opposite (A1)
or impulse = change in momentum (M1)
impulse on each equal and opposite (A1)
(ii) $1 \quad M_{1} V_{1}=M_{2} V_{2}$ B1
$2 \underline{E}=1 / 2 M_{1} V_{1}^{2}+1 / 2 M_{2} V_{2}^{2}$ B1
(iii) $1 E_{K}=1 / 2 m v^{2}$ and $p=m v$ combined to give M1
$E_{\mathrm{K}}=p^{2} / 2 m$ A0
2 m smaller, E_{K} is larger because p is the same/constant M1
so trolley B A0[1][1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	21

4 (a) when a wave (front) passes by/incident on an edge/slit M1
wave bends/spreads (into the geometrical shadow) A1
(b) $\tan \theta=\frac{38}{165}$
$\theta=13^{\circ}$ C1
$d \sin \theta=n \lambda$ C1
$d=2.82 \times 10^{-6}$ C1
number $=(1 / d=) 3.6 \times 10^{5}$ A1
(c) Premains in same position B1
X and Y rotate through 90° B1
(d) either screen not parallel to grating or grating not normal to (incident) light B1
[4]
5 (a) region/area where a charge experiences a force B1
(b) (i) left-hand sphere (+), right-hand sphere (-) B1
(ii) 1 correct region labelled C within 10 mm of central part of plate otherwise within 5 mm of plate B1
2 correct region labelled D area of field not included for (b)(ii)1 B1
(c) (i) arrows through P and N in correct directions B1
(ii) torque $=$ force \times perpendicular distance (between forces) C1
$=1.6 \times 10^{-19} \times 5.0 \times 10^{4} \times 2.8 \times 10^{-10} \times \sin 30$ A1

$$
\text { (ii) torque } \begin{aligned}
& =\text { force } \times \text { perpendicular distance (between foro } \\
& =1.6 \times 10^{-19} \times 5.0 \times 10^{4} \times 2.8 \times 10^{-10} \times \sin 30 \\
& =1.1 \times 10^{-24} \mathrm{~N} \mathrm{~m} \ldots \ldots
\end{aligned}
$$

$$
0
$$

6 (a) (i) $P=V I$ C1

(a) (i) $P=V I$
C1$I=5$ (0) AA1
(ii) either $\quad V=I R \quad$ or $\quad P=I^{2} R \quad$ or $P=V^{2} / R$ C1
either $12=5 \times R$ or $60=5^{2} \times R$ or $60=12^{2} / R$ M1
$R=2.4 \Omega$ A0
(b) $R=\rho L / A$ C1
$A=\pi \times\left(0.4 \times 10^{-3}\right)^{2}\left(=5.03 \times 10^{-7}\right)$ C1
$L=\left(2.4 \times 5.03 \times 10^{-7}\right) /\left(1.0 \times 10^{-6}\right)$ $=1.2 \mathrm{~m}$ A1
(c) resistance is halved M1
either current is doubled or power $\propto 1 / R$ M1
power is doubled A1
$I=5$.(0) A

[2]

[1]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	21

7 (a) nuclei/atoms with same proton number/atomic number B1
nuclei/atoms contain different numbers of neutrons/different atomic mass B1[2]
(b) (i) 92 A1 [1]
(ii) 146 A1[1]
(c) (i) mass $=238 \times 1.66 \times 10^{-27}$ C1
$=3.95 \times 10^{-25} \mathrm{~kg}$ A1
(ii) volume $=\frac{4}{3} \pi \times\left(8.9 \times 10^{-15}\right)^{3} \quad\left(=2.95 \times 10^{-42}\right)$ C1
density $=\left(3.95 \times 10^{-25}\right) /\left(2.95 \times 10^{-42}\right)$

$$
=1.3 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}
$$

A1
(d) nucleus contains most of mass of atom B1 either nuclear diameter/volume very much less than that of atomor atom is mostly (empty) spaceB1[2]

