MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/22
Paper 2 (AS Structured Questions)

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	22

1
(a) micrometer/screw gauge/digital callipers B1

 around the circumference/along the wire A1

2 (a) e.g. initial speed is zero constant acceleration straight line motion (any two, one mark each) B2

(b) (i) $s=1 / 2 a t^{2}$

2 or 3 SF answer A1
(ii) distance travelled by end of time interval $=90 \mathrm{~cm} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{C}$..................
$0.90=1 / 2 \times 9.8 \times t^{2}$

3 (a) (i) force is rate of change of momentum $\ldots \ldots \ldots$..
(ii) force on body A is equal in magnitude to force on body B (from A)M1

[3]

4 (a) e.g. no energy transfer
amplitude varies along its length/nodes and antinodes
neighbouring points (in inter-nodal loop) vibrate in phase, etc.
(any two, 1 mark each to max 2 B2

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	22

(b) (i) $\lambda=\left(330 \times 10^{2}\right) / 550$ M1
$\lambda=60 \mathrm{~cm}$ A0
(ii) node labelled at piston B1
antinode labelled at open end of tube B1
additional node and antinode in correct positions along tube B1
(c) at lowest frequency, length $=\lambda / 4$ C1
$\lambda=1.8 \mathrm{~m}$
frequency $=330 / 1.8$ C1
$=180 \mathrm{~Hz}$ A1
5 (a) (i) Young modulus = stress/strain C1
data chosen using point in linear region of graph M1
Young modulus $=\left(2.1 \times 10^{8}\right) /\left(1.9 \times 10^{-3}\right)$
$=1.1 \times 10^{11} \mathrm{~Pa}$ A1(ii) This mark was removed from the assessment, owing to a power-of-teninconsistency in the printed question paper.
(b) area between lines represents energy/area under curve represents energy M1
when rubber is stretched and then released/two areas are different A1
this energy seen as thermal energy/heating/difference represents energy released as heat A1
[3]
6 (a) either $P \propto V^{2}$ or $P=V^{2} / R$ C1
reduction $=\left(230^{2}-220^{2}\right) / 230^{2}$

$$
\text { = } 8.5 \text { \% }
$$

A1
(b) (i) zero A1
(ii) $0.3(0) \mathrm{A}$ A1
(c) (i) correct plots to within $\pm 1 \mathrm{~mm}$ B1
(ii) reasonable line/curve through points giving current as 0.12 A allow $\pm 0.005 \mathrm{~A}$) B1
(iii) $V=I R$ C1
$V=0.12 \times 5.0$
(d) circuit acts as a potential divider/current divides/current in AC not the same as current in BC B1
resistance between A and C not equal to resistance between C and B B1
or current in wire $A C \times R$ is not equal to current in wire $B C \times R$ B1
any 2 statements

$$
=0.6(0) \mathrm{V}
$$

A1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	22

7 (a) (i) either helium nucleus

or contains 2 protons and 2 neutrons

or contains 2 protons and 2 neutrons B1 B1 B1 B1 B1 B1 B1 B1 B1

\qquad

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper

(ii) e.g. range is a few cm in air/sheet of thin paper speed up to 0.1 c causes dense ionisation in air positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields positively charged or deflected in magnetic or electric fields (any two, 1 each to max 2) (any two, 1 each to max 2) B2 B2 B2 B2 B2 B2 B2 B2 B2

(b) (i) ${ }_{2}^{4} \alpha$

(b) (i) ${ }_{2}^{4} \alpha$ B1 B1

either ${ }_{1}^{1} \mathrm{p}$ or ${ }_{1}^{1} \mathrm{H}$

either ${ }_{1}^{1} \mathrm{p}$ or ${ }_{1}^{1} \mathrm{H}$ B1 B1

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy

(ii) 1 initially, α-particle must have some kinetic energy B1 B1

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$

(ii) $21.1 \mathrm{MeV}=1.1 \times 1.6 \times 10^{-13}=1.76 \times 10^{-13} \mathrm{~J}$ C1 C1

$E_{K}=1 / 2 m v^{2}$

$E_{K}=1 / 2 m v^{2}$ C1 C1

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$

$1.76 \times 10^{-13}=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$ C1 C1
$v=7.3 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
$v=7.3 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ A1 A1
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$
use of $1.67 \times 10^{-27} \mathrm{~kg}$ for mass is a maximum of $3 / 4$ 1 1 1 1 1 1 1 1 1[4][1][1]

