MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/23
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	23

1
(a) (i) 1% of ± 2.05 is ± 0.02

A1
(ii) max. value is 2.08 V
(b) there may be a zero error/calibration error/systematic error
which makes all readings either higher or lower than true value

M1
A1

2 (a) no resultant force/sum of forces zero B1
no resultant moment/torque/sum of moments/torques zero
B1
(b) (i) each force is represented by the side of a triangle/by an arrow M1 in magnitude and direction A1 arrows joined, head to tail B1 (could be shown on a sketch diagram)
(ii) if the triangle is 'closed' (then the forces are in equilibrium)

B1
(c) triangle drawn with correct shape (incorrect arrows loses this mark) B1
$T_{1}=5.4 \pm 0.2 \mathrm{~N}$ B1
$T_{2}=4.0 \pm 0.2 \mathrm{~N}$ B1
$\begin{array}{ll}\text { (d) forces in strings would be horizontal } & \text { B1 } \\ \text { (so) no vertical force to support the weight } & \text { B1 }\end{array}$

3 (a) evidence of use of area below the line B1
$\begin{array}{ll}\text { distance }=39 \mathrm{~m}(\text { allow } \pm 0.5 \mathrm{~m}) & \text { A2 }\end{array}$
(if $> \pm 0.5 m$ but $\leq 1.0 \mathrm{~m}$, then allow 1 mark)
(b) (i) $1 \quad E_{K}=1 / 2 m v^{2}$

C1

$$
\Delta E_{K}=1 / 2 \times 92 \times\left(6^{2}-3^{2}\right)
$$

$$
=1240 \mathrm{~J}
$$

A1
[2]
$\begin{array}{ll}2 & E_{P}=m g h \\ \Delta E_{P}=92 \times 9.8 \times 1.3 & \text { C1 }\end{array}$ $=1170 \mathrm{~J} \quad \mathrm{~A} 1$
(ii) $\begin{array}{rlr}E & =P t & \mathrm{C} 1 \\ E & =75 \times 8 & \end{array}$
$=600 \mathrm{~J}$
A1
(c) (i) energy $=(1240+600)-1170$ M1
$=670 \mathrm{~J} \quad \mathrm{AO}$
(ii) force $=670 / 39=17 \mathrm{~N} \quad \mathrm{~A} 1$
(d) frictional forces include air resistance B1 air resistance decreases with decrease of speed B1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	23

4

(a) (i) solid has fixed volume and fixed shape/incompressible	B1
(ii) gas fills any space into which it is put B1 (b) atoms/molecules have (elastic) collisions with the walls (of the vessel) momentum of atom/molecule changes so impulse (on wall)/force on wall random motion/many collisions (per unit time) gives rise to (constant) force/pressure	B 1
B1	
(c)spacing (much) greater in gases than in liquids/about ten times either spacing depends on $1 /{ }^{3} \sqrt{ } \rho$ or ratio of spacings is about 8.8	B 1

$\begin{array}{ll}\text { (c) spacing (much) greater in gases than in liquids/about ten times } \\ \text { either } & \text { spacing depends on } 1 /{ }^{3} \sqrt{ } \rho \\ \text { or } & \text { ratio of spacings is about } 8.8\end{array}$

| 5 | (a) (i)1

 n $n \lambda$ | B1 |
| :--- | :--- | :--- | :--- | :--- |
| | (not per second) | A1 |

(ii) $v=$ distance $/$ time $=n \lambda / t \quad \mathrm{M} 1$
$n / t=f$ hence $v=f \lambda \quad$ A1
or f oscillations per unit time so $f \lambda$ is distance per unit time M1
distance per unit time is v so $v=f \lambda \quad$ A1
(a) (i) 1 number of oscillations per unit time (not per second) B1
$2 n \lambda$ A1
$\begin{array}{ll}\text { (b) (i) } 1.0 \text { period is } 3 \times 2=6.0 \mathrm{~ms} & \mathrm{C} 1 \\ \text { frequency }=1 /\left(6 \times 10^{-3}\right)=170 \mathrm{~Hz} & \mathrm{~A} 1\end{array}$
[2]
(ii) wave (with approx. same amplitude and) with correct phase difference B1

6 (a) (i) movement/flow of charged particles B1
(ii) work done per unit charge (transferred) B1
(b) straight line through origin B1
resistance $=V / I$, with values for V and I shown M1

$$
=20 \Omega
$$ A0

(using the gradient loses the last mark)
(c) (i) $0.5 \mathrm{~A} \quad \mathrm{~A} 1$
$\begin{array}{ll}\text { (ii) either resistance of each resistor is } 20 \Omega \text { or total current }=0.8 \mathrm{~A} \\ \text { either combined resistance }=10 \Omega \text { or } R=E / I=10 \Omega & \mathrm{C} 1 \\ \text { A1 }\end{array}$
(d) (i) 10 V A1
(ii) power $=E I \quad$ C1 $=10 \times 0.2=2.0 \mathrm{~W} \quad \mathrm{~A} 1$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	23

7 (a) (i) either helium nucleus or particle containing two protons and two neutrons B1
(ii) allow any value between 1 cm and $10 \mathrm{~cm} \quad \mathrm{~B} 1$
(b) (i) energy $=\left(8.5 \times 10^{-13}\right) /\left(1.6 \times 10^{-13}\right)$
$=5.3 \mathrm{MeV}$
A0
(ii) number $=\left(5.3 \times 10^{6}\right) / 31 \quad \mathrm{C} 1$
$=1.7 \times 10^{5}$ (allow 2 s.f. only) A1
(iii) number per unit length $=\left(1.7 \times 10^{5}\right) /(\mathbf{a})$ (ii) correct numerical value A1 correct unit B1

