MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	41

Section A

1 (a) angle (subtended) at centre of circle
B1
(by) arc equal in length to radius
B1
(b) (i) point S shown below C
(ii) $\begin{array}{ll}(\max) \text { force } / \text { tension }=\text { weight }+ \text { centripetal force } & \text { C1 }\end{array}$
centripetal force $=m r \omega^{2}$
C1
$15=3.0 / 9.8 \times 0.85 \times \omega^{2}$
$\omega=7.6 \mathrm{rad} \mathrm{s}^{-1}$
A1

2 (a) (i) $27.2+273.15$ or $27.2+273.2$ C1 300.4 K A1
(ii) 11.6 K A1
(b) (i) $\left(\left\langle c^{2}\right\rangle\right.$ is the) mean / average square speed
(ii) $\rho=N m / V$ with N explained \quad B1
so, $p V=1 / 3 \mathrm{Nm}<c^{2}>\quad$ B1
and $p V=N k T$ with k explained B1
so mean kinetic energy $/\left\langle E_{k}\right\rangle=1 / 2 m\left\langle c^{2}\right\rangle=3 / 2 k T$
B1
(c) (i) $p V=n R T$
$2.1 \times 10^{7} \times 7.8 \times 10^{-3}=n \times 8.3 \times 290 \quad$ C1
$n=68 \mathrm{~mol}$
A1
(ii) mean kinetic energy $=3 / 2 \mathrm{kT}$

$$
\begin{array}{ll}
=3 / 2 \times 1.38 \times 10^{-23} \times 290 & \text { C1 } \\
=6.0 \times 10^{-21} \mathrm{~J} & \text { A1 }
\end{array}
$$

(iii) realisation that total internal energy is the total kinetic energy
energy $=6.0 \times 10^{-21} \times 68 \times 6.02 \times 10^{23}$
$=2.46 \times 10^{5} \mathrm{~J}$
A1

3 (a) (i) to-and-fro / backward and forward motion (between two limits)
B1
(ii) no energy loss or gain / no external force acting / constant energy / constant amplitude

> B1
(iii) acceleration directed towards a fixed point
acceleration proportional to distance from the fixed point / displacement

B1
B1

[2]

(b) acceleration is constant (magnitude)

M1
so cannot be s.h.m.
A1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	41

4 (a) ability to do work
B1
as a result of the position/shape, etc. of an object
B1
[2]
(b) (i) $1 \quad \Delta E_{\text {gpe }}=G M m / r \quad C$
$=\left(6.67 \times 10^{-11} \times\left\{2 \times 1.66 \times 10^{-27}\right\}^{2}\right) /\left(3.8 \times 10^{-15}\right)$
$=1.93 \times 10^{-49} \mathrm{~J}$
C1
$\left.\left.=1.93 \times 10^{-11} \mathrm{~J} \times 1.66 \times 10^{-27}\right\}^{2}\right) /\left(3.8 \times 10^{-15}\right)$ A1
[3]
$2 \Delta E_{\text {epe }}=Q q / 4 \pi \varepsilon_{0} r, ~\left(1.6 \times 10^{-19}\right)^{2} /\left(4 \pi \times 8.85 \times 10^{-12} \times 3.8 \times 10^{-15}\right)$
C1
C1
A1
(ii) idea that $2 E_{K}=\Delta E_{\text {epe }}-\Delta E_{\text {gpe }}$

B1
$E_{K}=3.03 \times 10^{-14} \mathrm{~J}$
$=\left(3.03 \times 10^{-14}\right) / 1.6 \times 10^{-13}$ M1
$=0.19 \mathrm{MeV}$
(iii) fusion may occur / may break into sub-nuclear particles

5 (a) (i) V_{H} depends on angle between (plane of) probe and B-field
either V_{H} max when plane and B-field are normal to each other
or $\quad V_{\mathrm{H}}$ zero when plane and B-field are parallel
or $\quad V_{\mathrm{H}}$ depends on sine of angle between plane and B-field
B1
(ii) 1 calculates $V_{H} r$ at least three times M1
to 1 s.f. constant so valid or approx constant so valid or to 2 s.f., not constant so invalid

A1
2 straight line passes through origin
(b) (i) e.m.f. induced is proportional / equal to
rate of change of (magnetic) flux (linkage)
constant field in coil / flux (linkage) of coil does not change
(ii) e.g. vary current (in wire) / switch current on or off / use a.c. current rotate coil move coil towards / away from wire (1 mark each, max 3)

6 (a) all four diodes correct to give output, regardless of polarity
(b) $N_{\mathrm{S}} / N_{\mathrm{P}}=V_{\mathrm{S}} / V_{\mathrm{P}}$

C1
$V_{0}=\sqrt{ } 2 \times V_{\text {rms }}$
C1
ratio $=9.0 /(\sqrt{ } 2 \times 240)$

$$
=1 / 38 \text { or } 1 / 37 \text { or } 0.027
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	41

7 (a) arrow pointing up the page
B1 [1]
(b) (i) $E q=B q v$

$$
\begin{equation*}
=1.3 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \tag{3}
\end{equation*}
$$

C1
$v=\left(12 \times 10^{3}\right) /\left(930 \times 10^{-6}\right) \quad$ C1
A1
(ii) $\begin{aligned} B q v & =m v^{2} / r \\ q / m & =\left(1.3 \times 10^{7}\right) /\left(7.9 \times 10^{-2} \times 930 \times 10^{-6}\right)\end{aligned}$

C1
$=1.8 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$
C1
A1

8 (a) momentum conservation hence momenta of photons are equal (but opposite)
(b) (i) $(\Delta) E=(\Delta) m c^{2}$

$$
\begin{aligned}
& =1.2 \times 10^{-28} \times\left(3.0 \times 10^{8}\right)^{2} \\
& =1.08 \times 10^{-11} \mathrm{~J}
\end{aligned}
$$

(ii) $E=h c / \lambda$

$$
\begin{aligned}
\lambda & =\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(1.08 \times 10^{-11}\right) \\
& =1.84 \times 10^{-14} \mathrm{~m}
\end{aligned}
$$

(iii) $\lambda=h / p$

$$
p=\left(6.63 \times 10^{-34}\right) /\left(1.84 \times 10^{-14}\right)
$$

$$
=3.6 \times 10^{-20} \mathrm{~N} \mathrm{~s}
$$

Section B

9 (a) (i) point X shown correctly
(ii) op-amp has very large / infinite gain \quad M1
non-inverting input is at earth (potential) / earthed / at 0 V M1
if amplifier is not to saturate, inverting input must be (almost)
at earth potential / $0(\mathrm{~V}$) same potential as inverting input
(b) (i) total input resistance $=1.2 \mathrm{k} \Omega$
(amplifier) gain ($=-4.2 / 1.2$) $=-3.5 \quad$ C1
(voltmeter) reading $=-3.5 \times-1.5$

$$
=5.25 \mathrm{~V}
$$

(total disregard of signs or incorrect sign in answer, max 2 marks)
(ii) (less bright so) resistance of LDR increases M1
(amplifier) gain decreases
(voltmeter) reading decreases
reading deat

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9702	41

10 (a) X-ray taken of slice / plane / section B1
repeated at different angles B1
images / data is processed B1
combined / added to give (2-D) image of slice B1
repeated for successive slices B1
to build up a 3-D image B1
image can be viewed from different angles / rotated B1
$\max 6$
(b) (i) 16
(ii) evidence of deducting 16 then dividing by 3
$\left.\left.\begin{array}{l}\text { to give } \\ \hline 3 \\ \hline 3\end{array} \right\rvert\, 2 \begin{array}{|c|}\hline 6\end{array}\right) 5$

11 (a) frequency of carrier wave varies (in synchrony) with signal
(b) advantages e.g. less noise / less interference greater bandwidth / better quality
(1 each, max 2)
disadvantages e.g. short range / more transmitters / line of sight more complex circuitry greater expense
(1 each, max 2)

12 (a) gain $/$ loss $/ \mathrm{dB}=10 \lg \left(P_{1} / P_{2}\right)$
$190=10 \lg \left(18 \times 10^{3} / P_{2}\right)$
or $-190=10 \lg P_{2} / 18 \times 10^{3}$) C1
power $=1.8 \times 10^{-15} \mathrm{~W}$
(b) (i) $11 \mathrm{GHz} / 12 \mathrm{GHz}$ B1
(ii) e.g. so that input signal to satellite will not be 'swamped' to avoid interference of uplink with / by downlink B1

