MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Syllabus	Paper							
		GCE AS/A LEVEL – May/June 2010	9702	43							
	Section A										
1		rk done moving <u>unit</u> mass n infinity to the point		M1 A1	[2]						
	(b) (i)	at R, $\phi = 6.3 \times 10^7 \text{ J kg}^{-1}$ (allow ± 0.1 × 10 ⁷) $\phi = GM / R$		B1							
		$ \begin{array}{l} \varphi = 0.0M + R \\ 6.3 \times 10^7 = (6.67 \times 10^{-11} \times M) / (6.4 \times 10^6) \\ M = 6.0 \times 10^{24} \text{ kg (allow } 5.95 \rightarrow 6.14) \\ \text{Maximum of } 2/3 \text{ for any value chosen for } \phi \text{ not at } R \end{array} $		C1 A1	[3]						
	(ii)	change in potential = 2.1×10^7 J kg ⁻¹ (allow ± 0.1×10^7) loss in potential energy = gain in kinetic energy $\frac{1}{2}mv^2 = \phi m \text{ or } \frac{1}{2}mv^2 = GM/3R$ $\frac{1}{2}v^2 = 2.1 \times 10^7$		C1 B1 C1							
		$v = 6.5 \times 10^3 \text{ m s}^{-1}$ (allow $6.3 \rightarrow 6.6$) (answer $7.9 \times 10^3 \text{ m s}^{-1}$, based on $x = 2R$, allow max 3 m	arks)	A1	[4]						
	(iii)	e.g. speed / velocity / acceleration would be greater deviates / bends from straight path (any sensible ideas, 1 each, max 2)		B1 B1	[2]						
2	(a) (i)	reduction in energy (of the oscillations) reduction in amplitude / energy of oscillations due to force (always) opposing motion / resistive forces any two of the above, max 2		(B1) (B1) (B1)	[2]						
	(ii)	amplitude is decreasing (very) gradually / oscillations wou continue (for a long time) /many oscillations light damping	uld	M1 A1	[2]						
	(b) (i)	frequency = $1/0.3$ = 3.3 Hz allow points taken from time axis giving <i>f</i> = 3.45 Hz		A1	[1]						
	(ii)	energy = $\frac{1}{2} mv^2$ and $v = \omega a$ = $\frac{1}{2} \times 0.065 \times (2\pi/0.3)^2 \times (1.5 \times 10^{-2})^2$ = 3.2 mJ		C1 M1 A0	[2]						
		plitude reduces exponentially / does not decrease linearly will be not be 0.7 cm		M1 A1	[2]						

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper			
				GCE AS/A LEVEL – May/June 2010	9702	43			
3	(a)	(i)		g C corresponds to (3840 – 190) / 100 Ω esistance 2300 Ω , temperature is 100 × (2300 – 3840)	/ (190 – 3840)	C1			
		temperature is 42°C					[2]		
		(ii)		er 286 K = $13 \degree C$ or $42 \degree C = 315$ K modynamic scale does not depend on the property of a	a substance	B1 M1			
			so change in resistance (of thermistor) with temperature is non-linear						
	(b)	hea	ıt gair	ned by ice in melting = $0.012 \times 3.3 \times 10^5$ J = 3960 J		C1			
		hea	t lost	by water = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$		C1			
		396	60 + (0	$0.012 \times 4.2 \times 10^3 \times \theta) = 0.095 \times 4.2 \times 10^3 \times (28 - \theta)$		C1			
			: 16°			A1	[4]		
				18°C – melted ice omitted – allow max 2 marks) θ – T) then allow max 1 mark)					
4	(a)			$q_1q_2/4\pi\varepsilon_0x^2$		C1			
		= (6.4 ×	10^{-19}) ² / ($4\pi \times 8.85 \times 10^{-12} \times \{12 \times 10^{-6}\}^2$)		C1	701		
		= 2	2.56 ×	10 ⁻¹⁷ N		A1	[3]		
	(b)	-		at P is same as potential at Q		B1			
				$he = q \Delta V$ so zero work done		M1 A0	[2]		
		ΔV	0.0			710	[~]		
	(c)			int, potential is $2 \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 6 \times 10^{-6})$	/// 0 10 ⁻⁶)	C1			
		at F	, pote nae i	ential is $(6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 3 \times 10^{-6}) + (6.4 \times 10^{-19})$ n potential = $(6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$	$/ (4\pi\varepsilon_0 \times 9 \times 10^{\circ})$	C1			
				$= 1.6 \times 10^{-19} \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$		C1			
			:	= $1.0 \times 10^{-22} \text{ J}$		A1	[4]		
_									
5	(a)			age of charge' / storage of energy of direct current					
				g of electrical oscillations					
			oothir	•					
		(an	y two	, 1 mark each)		B2	[2]		
	(b)	(i)	-	acitance of parallel combination = $60 \mu\text{F}$		C1	[0]		
			total	capacitance = 20 µF		A1	[2]		
		(ii)	•	across parallel combination = $\frac{1}{2} \times p.d.$ across single	capacitor	C1	101		
			max	imum is 9V		A1	[2]		
	(c)	eith	<i>er</i> er	nergy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and Q = CV		C1			
	. ,		ergy	$= \frac{1}{2} \times 4700 \times 10^{-6} \times (18^2 - 12^2)$		C1			
			:	= 0.42 J		A1	[3]		

	Page 4	4	Mark Scheme: Teachers' version Sylla		Paper		
			GCE AS/A LEVEL – May/June 2010	9702	43		
6	(a) (i) straight line with positive gradient through origin				M1 A1	[2]	
	(ii)	zero	imum force shown at $\theta = 90^{\circ}$ force shown at $\theta = 0^{\circ}$ onable curve with <i>F</i> about ½ max at 30°		M1 M1 A1	[3]	
	(b) (i)		e on electron due to magnetic field e on electron normal to magnetic field and direction of	electron	B1 B1	[2]	
	(ii)		e / mention of (Fleming's) left hand rule tron moves towards QR		M1 A1	[2]	
7	(a) eith or		the value of steady / constant voltage that produces same power (in a resistor) as the altern if alternating voltage is squared and averaged the r.m.s. value is the square root of this averaged val		M1 A1 (M1) (A1)	[2]	
	(b) (i)	220	V		A1	[1]	
	(ii)	156	V		A1	[1]	
	(iii)	60 H	lz		A1	[1]	
	(c) pov R	wer = = 156	V _{rms} ² / R 5 ² / 1500		C1		
		16 Ω			A1	[2]	
8	(a) (i)	num	ber = $(5.1 \times 10^{-6} \times 6.02 \times 10^{23}) / 241$ = 1.27×10^{16}		C1 A1	[2]	
	(ii)		$< 10^5 = \lambda \times 1.27 \times 10^{16}$		C1		
			$4.65 \times 10^{-11} \text{ s}^{-1}$		A1	[2]	
	(iii)		$1 \times 10^{-11} \times t_{\frac{1}{2}} = \ln 2$ = 1.49 × 10 ¹⁰ s		C1		
			= 470 years		A1	[2]	

(b) sample / activity would decay appreciably whilst measurements are being made B1 [1]

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper				
				GCE AS/A LEVEL – May/June 2010	9702	43				
	Section B									
9	(a)	(i)		tion of the output (signal) is added to the input (signal) of phase by 180° / π rad / to inverting input		M1 A1	[2]			
		(ii)	incre grea redu	reduces gain eases bandwidth iter stability ices distortion ^y two, 1 mark each)		B2	[2]			
	(b)	(i)	gain	= 4.4 / 0.062 = 71		A1	[1]			
		(ii)		= 1 + 120/ <i>R</i> 1.7 × 10 ³ Ω		C1 A1	[2]			
	(c)	ma	ximur	mplifier not to saturate n output is (71 \times 95 \times 10 ⁻³ =) approximately 6.7 V hould be +/– 9 V		B1 M1 A1	[3]			
10	(a)	(i)	strai	n gauge		B1	[1]			
		(ii)	piez	o-electric / quartz crystal / transducer		B1	[1]			
	(b)	circ		coil of relay connected between sensing circuit output switch across terminals of external circuit diode in series with coil with correct polarity for diode second diode with correct polarity	and earth	B1 B1 B1 B1	[4]			
11	<i>either</i> quartz <i>or</i> piezo-electric crystal opposite faces /two sides coated (with silver) to act as electrodes <i>either</i> molecular structure indicated <i>or</i> centres of (+) and (-) charge not coincident potential difference across crystal causes crystal to change shape alternating voltage (in US frequency range) applied across crystal causes crystal to oscillate / vibrate (crystal cut) so that it vibrates at resonant frequency (max 6)									

	Page 6			Mark Scheme: Teachers' version	Syllabus	Paper	,
				GCE AS/A LEVEL – May/June 2010	9702	43	
12	(a)	•		comes distorted / noisy es power / energy / intensity / is attenuated		B1 B1	[2]
	(b)	(i)	either or	 numbers involved are smaller / more manageable / calculations involve addition & subtraction rather th 		•	on [1]
		(ii)	minim signal	10 lg(P_{min} / (6.1 × 10 ⁻¹⁹)) num signal power = 1.93 × 10 ⁻¹⁶ W l loss = 10 lg(6.5 × 10 ⁻³)/(1.93 × 10 ⁻¹⁶) = 135 dB num cable length = 135 / 1.6 = 85 km so no repeaters necessar	v	C1 C1 C1 C1 A1	[5]