MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	21

1 (a) (i) metre rule / tape (not 'rule')
(ii) micrometer (screw gauge) / digital caliper
(iii) ammeter and voltmeter / ohmmeter / multimeter on 'ohm’ setting
(b) (i) resistivity $=R A / L$

$$
=\left[7.5 \times \pi \times\left(0.38 \times 10^{-3}\right)^{2} / 4\right] / 1.75
$$

$$
=4.86 \times 10^{-7} \Omega \mathrm{~m}
$$

A0
(ii) (uncertainty in $R=$) $[0.2 / 7.5] \times 100=2.7 \%$ and (uncertainty in $L=$) [3/1750] $\times 100=0.17 \%$
(uncertainty in $A=$) $2 \times(0.01 / 0.38) \times 100=5.3 \%$
C1 total $=8.13 \%$ C1
uncertainty $=0.395 \times 10^{-7}(\Omega \mathrm{~m})$
(missing 2 factor in uncertainty in A, then allow max $3 / 4$)
(c) resistivity $=\left(4.9 \times 10^{-7} \pm 0.4 \times 10^{-7}\right) \Omega \mathrm{m}$

2 (a) work done is the force \times the distance moved / displacement in the direction of the force
or
work is done when a force moves in the direction of the force
(b) component of weight $=850 \times 9.81 \times \sin 7.5^{\circ}$

$$
=1090 \mathrm{~N}
$$

(use of incorrect trigonometric function, 0/2)
(c) (i) $\Sigma F=4600-1090=(3510)$
deceleration $=3510 / 850$

$$
=4.1 \mathrm{~ms}^{-2}
$$

$0=25^{2}+2 \times-4.1 \times s$ $=76 \mathrm{~m}$
(allow full credit for calculation of time (6.05 s) \& then s)
(iii) 1. kinetic energy $=1 / 2 m v^{2}$

$$
\begin{align*}
& =0.5 \times 850 \times 25^{2} \tag{1}\\
& =2.7 \times 10^{5} \mathrm{~J} \tag{2}
\end{align*}
$$

2. work done $=4600 \times 75.7$

$$
\begin{equation*}
=3.5 \times 10^{5} \mathrm{~J} \tag{1}
\end{equation*}
$$

(iv) difference is the loss in potential energy (owtte)
[2] A1
[2]
A1 B1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	21

3 (a) point where the weight of an object / gravitational force M1may be considered to actA1
(b) product of the force and the perpendicular distance (to the pivot) B1
(c) (i) 1. sum / net / resultant force is zero B1
2. net / resultant moment is zero sum of clockwise moments = sum of anticlockwise moments B1 [2]
(ii) $W \times 0.2=80 \times 0.5+70 \times 1.3$ C1
$=40+91$ C1
$W \quad=655 \mathrm{~N}$ A1
(allow $2 / 3$ for one error in distance but $0 / 3$ if two errors)
(iii) move pivot to left(M1)(A1)
ormove W to right(M1)gives smaller anticlockwise moment(A1)
[3]
gives greater clockwise moment / smaller gives greater clockwise
anticlockwise moment[2]
4 (a) (i) stress is force / area B1
(ii) strain is extension / original length B1
(b) (i) $E=[F / A] \div[e / 7]$ C1
$e=(25 \times 1.7) /\left(5.74 \times 10^{-8} \times 1.6 \times 10^{11}\right)$ C1$e=4.6 \times 10^{-3} \mathrm{~m}$A1
(ii) A becomes $A / 2$ or stress is doubled B1
$e \propto l / A$ or substitution into full formula B1
total extension increase is $4 e$ A1
5 (a) (i) $I=12 /(6+12)$ C1A1 M1 A1
correct shape for curve with decreasing gradient[2] A1 A1[2]
[3][3][1]
minimum current $=0.67 \mathrm{~A}$
(ii) correct start and finish points
(ii) correct start and finish points
(b) maximum current $=2.0 \mathrm{~A}$
(b) maximum current $=2.0 \mathrm{~A}$
minimum current $=0$
minimum current $=0$[2]
(c) (i) smooth curve starting at $(0,0)$ with decreasing gradient M1
end section not horizontal A1
(ii) full range of current / p.d. possibleor currents / p.d. down to zeroor brightness ranging from off to full brightnessB1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	21

6 (a) any two of:
large number of molecules / atoms / particles
molecules in random motion
no intermolecular forces
elastic collisions
time of collisions much less than time between collisions
volume of molecules much less than volume of containing vesse
$B 1+B 1$
(b) molecules collide with the walls
change in momentum of molecules implies force (on molecules)
molecules exert equal and opposite force on wall pressure is averaging effect of many collisions (any three statements, 1 each)

7 (a) when waves overlap / meet, (resultant) displacement is the sum of the individual displacements
(b) (i) two (ball-type) dippers
connected to the same vibrating source /motor
or
one wave source described
with two slits
$\begin{array}{ll}\text { (ii) lamp with viewing screen on opposite side of tank } & \text { B1 } \\ \text { means of freezing picture e.g. strobe } & \text { B1 }\end{array}$
(c) (i) two correct lines labelled X B1
(ii) correct line labelled N B1

