MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	22

1 (a) scalar has only magnitude
(b) kinetic energy, mass, power all three underlined
(c) (i) $s=u t+1 / 2 a t^{2}$
$15=0.5 \times 9.81 \times t^{2} \quad$ C1
$T=1.7 \mathrm{~s}$
A1
if $g=10$ is used then -1 but only once on paper
(ii) vertical component v_{v} :
$v_{v}{ }^{2}=u^{2}+2 a s=0+2 \times 9.81 \times 15$ or $v_{v}=u+a t=9.81 \times 1.7(5)$
$v_{v}=17.16$
C1
resultant velocity: $v^{2}=(17.16)^{2}+(20)^{2}$
$v=26 \mathrm{~ms}^{-1}$
C1

If $u=20$ is used instead of $u=0$ then $0 / 3$
Allow the solution using:
initial (potential energy + kinetic energy) $=$ final kinetic energy
(iii) distance is the actual path travelled
displacement is the straight line distance between start and finish points (in that direction) / minimum distance

2 (a) (i) base units of D :
force: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
B1
radius: $\mathrm{m} \quad$ velocity: ms^{-1}
B1
base units of $D:[F /(R \times v)] \mathrm{kgms}^{-2} /\left(\mathrm{m}^{2} \mathrm{~ms}^{-1}\right) \quad$ M1
$=\mathrm{kgm}^{-1} \mathrm{~s}^{-1}$
A0
(ii) 1. $F=6 \pi \times D \times R \times v=\left[6 \pi \times 6.6 \times 10^{-4} \times 1.5 \times 10^{-3} \times 3.7\right]$

$$
\begin{equation*}
=6.9 \times 10^{-5} \mathrm{~N} \tag{A1}
\end{equation*}
$$

2. $m g-F=m a \quad$ hence $a=g-[F / m]$
$m=\rho \times V=\rho \times 4 / 3 \pi R^{3}=\left(1.4 \times 10^{-5}\right)$
$a=9.81-\left[6.9 \times 10^{-5}\right] / \rho \times 4 / 3 \pi \times\left(1.5 \times 10^{-3}\right)^{3}$
(9.81-4.88)

M1
$a=4.9(3) \mathrm{ms}^{-2}$
A1
(b) (i) $a=g$ at time $t=0$

B1
a decreases (as time increases)
B1
a goes to zero
B1
$\begin{array}{lr}\text { (ii) Correct shape below original line } & \text { M1 } \\ \text { sketch goes to terminal velocity earlier } & \text { A1 }\end{array}$

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	22

3 (a) (i) work done equals force \times distance moved / displacement in the direction of the force
(ii) power is the rate of doing work / work done per unit time
(b) (i) kinetic energy $=1 / 2 m v^{2}$

$$
=0.5 \times 600(9.5)^{2}
$$

$=27075(\mathrm{~J})=27 \mathrm{~kJ}$
C1 A1
(ii) potential energy $=m g h$
$=600 \times 9.81 \times 4.1 \quad$ M1
$=24132(\mathrm{~J}) \quad$ A1
$=24 \mathrm{~kJ}$
(iii) work done $=27-24=3.0 \mathrm{~kJ}$ A1
(iv) resistive force $=3000 / 8.2$ (distance along slope $=4.1 / \sin 30^{\circ}$) $=366 \mathrm{~N}$

4 (a) clamped horizontal wire over pulley or vertical wire attached to ceiling with mass attached
details: reference mark on wire with fixed scale alongside
(b) measure original length of wire to reference mark with metre ruler / tape
measure diameter with micrometer / digital calipers
measure initial and final reading (for extension) with metre ruler or other suitable scale
measure / record mass or weight used for the extension
good physics method:
measure diameter in several places / remove load and check wire returns to original length / take several readings with different loads

MAX of 4 points
(c) determine extension from final and initial readings
plot a graph of force against extension
determine gradient of graph for F / e
calculate area from $\pi d^{2} / 4$
calculate E from $E=F l /$ e A or gradient $\times l / A$
MAX of 4 points

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	22

5 (a) (i) energy converted from chemical to electrical when charge flows through cell or round complete circuit
(ii) (resistance of the cell) causing loss of voltage or energy loss in cell
(b) (i) $E_{\mathrm{B}}-E_{\mathrm{A}}=I\left(R+r_{\mathrm{B}}+r_{\mathrm{A}}\right)$
$12-3=I(3.3+0.1+0.2) \quad$ C1
$I=2.5 \mathrm{~A}$
A1
(ii) Power $=E \times I$

$$
=12 \times 2.5 \quad \mathrm{C} 1
$$

$$
=30 \mathrm{~W}
$$ A1

(iii) $P=I^{2} \times R$ or $P=V^{2} / R$ or $P=V I$
$=(2.5)^{2} \times 3$
$=9^{2} / 3.6$
$=9 \times 2.5$
C1
$=22.5 \mathrm{~J} \mathrm{~s}^{-1}$ A1
(c) power supplied from cell B is greater than energy lost per second in circuit

6 (a) (i) to produce coherent sources or constant phase difference B1
(ii) 1. $360^{\circ} / 2 \pi$ rad allow $\mathrm{n} \times 360^{\circ}$ or $\mathrm{n} \times 2 \pi$ (unit missing -1)

B1
2. $180^{\circ} / \pi$ rad allow $\left(\mathrm{n} \times 360^{\circ}\right)-180^{\circ}$ or $(\mathrm{n} \times 2 \pi)-\pi$

B1
(iii) 1. waves overlap / meet B1
(resultant) displacement is sum of displacements of each wave
B1
2. at P crest on trough (OWTTE)

B1
(b) $\lambda=a x / D$

C1

$$
=2 \times 2.3 \times 10^{-3} \times 0.25 \times 10^{-3} / 1.8
$$

C1
$=639 \mathrm{~nm}$ A1

