UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		<u> </u>	Mark Scheme: Teachers' version	Syllabus	Paper		
				GCE AS/A LEVEL – May/June 2011 9702		41	
Se	ctior	ıΑ					
1	(a)	(i)		e proportional to product of masses e inversely proportional to square of separation		B1 B1	[2]
		(ii)	sepa	aration <u>much</u> greater than radius / diameter of Sun / pla	anet	B1	[1]
	(b)	(i)	_	force or field strength \propto 1 / r^2 intial \propto 1 / r		B1	[1]
		(ii)		gravitational force (always) attractive tric force attractive or repulsive		B1 B1	[2]
2	(a)			of atoms of carbon-12 kg of carbon-12		M1 A1	[2]
	(b)	(b) $pV = NkT$ or $pV = nRT$ substitutes temperature as 298 K either $1.1 \times 10^5 \times 6.5 \times 10^{-2} = N \times 1.38 \times 10^{-23} \times 298$					
		or	1	$.1 \times 10^5 \times 6.5 \times 10^{-2} = n \times 8.31 \times 298$ and $n = N / 6.02$	× 10 ²³	C1 A1	[4]
3	(a)	acc	acceleration / force proportional to displacement from a fixed point acceleration / force (always) directed towards that fixed point / in opposite direction to displacement			M1	
		dire				A1	[2]
	(b)	(i)	nega	/m is a constant and so acceleration proportional to x ative sign shows acceleration towards a fixed point $/m$ in action to displacement		B1 B1	[2]
		(ii)		· · (Aρg / m)		C1 C1	
				$\pi \times 1.5)^2 = (\{4.5 \times 10^{-4} \times 1.0 \times 10^3 \times 9.81\} / m)$		C1 A1	[4]
4	(a)	work done in bringing unit positive charge from infinity (to that point)			M1 A1	[2]	
	(b)	(i)	field	strength is potential gradient		B1	[1]
		(ii)	pote	strength proportional to force (on particle Q) ential gradient proportional to gradient of (potential energies is proportional to the gradient of the graph	rgy) graph	B1 B1 A0	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	•
				GCE AS/A LEVEL – May/June 2011	9702	41	
	(c)	energy = $5.1 \times 1.6 \times 10^{-19}$ (J) potential energy = $Q_1Q_2 / 4\pi \varepsilon_0 r$ $5.1 \times 1.6 \times 10^{-19} = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times r$ $r = 2.8 \times 10^{-10}$ m				C1 C1 C1 A1	[4]
	(d)	(i)		k is got out as x decreases apposite sign		M1 A1	[2]
		(ii)		rgy would be doubled lient would be increased		B1 B1	[2]
5	(a)	region (of space) where there is a force either on / produced by magnetic pole				M1	
		or	0	n / produced by current carrying conductor / moving ch	narge	A1	[2]
	(b)	(i)		e on particle is (always) normal to velocity / direction of ed of particle is constant	travel	B1 B1	[2]
		(ii)	mv^2	netic force provides the centripetal force / r = Bqv mv / Bq		B1 M1 A0	[2]
	(c)	(i)	dired	ction from 'bottom to top' of diagram		B1	[1]
		(ii)	ratio	us proportional to momentum 0 = 5.7 / 7.4		C1	ro1
			= 0.7 (ans	wer must be consistent with direction given in (c)(i))		A1	[2]
6	(a)	(i)	to co	oncentrate the (magnetic) flux / reduce flux losses		B1	[1]
		(ii)		nging flux (in core) induces current in core ents in core give rise to a heating effect		M1 A1	[2]
	(b)	(i)		f. induced proportional to of change of (magnetic) flux (linkage)		M1 A1	[2]
		(ii)	e.m.	netic flux in phase with / proportional to e.m.f. / current f. / p.d. across secondary proportional to rate of chang m.f. of supply not in phase with p.d. across secondary	e of flux	M1 M1 A0	[2]
	(c)	(i)		same power (transmission), high voltage with low curre low current, less energy losses in transmission cables		B1 B1	[2]
		(ii)	volta	age is easily / efficiently changed		B1	[1]

Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011		41	
	for a	ı wave, tron wil	electron will always be emitted / Il be emitted at all frequencies		B1 M1 A1	[3]
` '	.,	or or	frequency is below the threshold frequency photon energy is less than work function		B1	[1]
		(6.63 ×	$\times 10^{-34} \times 3.0 \times 10^{8}$) / (240 × 10 ⁻⁹) = ϕ + 4.44 × 10 ⁻¹⁹		C1 A1	[3]
(c)					M1 A1	[2]
					M1 A1	[2]
(a)	(i)	Fe sho	own near peak		A1	[1]
((ii)	Zr sho	wn about half-way along plateau		A1	[1]
(iii)	H shov	wn at less than 0.4 of maximum height		A1	[1]
(b)					M1 A1	[2]
(binding	g energy of parent nucleus is less than sum of bindin	g energies	B1 B1	[2]
	(a) (b) (c) (a)	(a) for a for a for a electric after (b) (i) (c) (i) (ii) (a) (i) (iii) (iii) (b) (i)	 (a) for a wave, for a wave, electron wi after a sufficient or or or (b) (i) either or or or (ii) hc/λ: (6.63 × φ = 3.8 (c) (i) photor so (maximum) fewer so (maximum)	 (a) for a wave, electron can 'collect' energy continuously for a wave, electron will always be emitted / electron will be emitted at all frequencies after a sufficiently long delay (b) (i) either wavelength is longer than threshold wavelength or frequency is below the threshold frequency or photon energy is less than work function (ii) hc/λ = φ + E_{MAX} (6.63 × 10⁻³⁴ × 3.0 × 10⁸) / (240 × 10⁻⁹) = φ + 4.44 × 10⁻¹⁹ φ = 3.8 × 10⁻¹⁹ J (allow 3.9 × 10⁻¹⁹ J) (c) (i) photon energy larger so (maximum) kinetic energy is larger (ii) fewer photons (per unit time) so (maximum) current is smaller (a) (i) Fe shown near peak (ii) The shown about half-way along plateau (iii) H shown at less than 0.4 of maximum height (b) (i) heavy / large nucleus breaks up / splits into two nuclei / fragments of approximately equal mass (iii) binding energy of nucleus = B_E × A 	 (a) for a wave, electron can 'collect' energy continuously for a wave, electron will always be emitted / electron will be emitted at all frequencies after a sufficiently long delay (b) (i) either wavelength is longer than threshold wavelength or frequency is below the threshold frequency or photon energy is less than work function (ii) hc / λ = φ + E_{MAX} (6.63 × 10⁻³⁴ × 3.0 × 10⁸) / (240 × 10⁻⁹) = φ + 4.44 × 10⁻¹⁹ φ = 3.8 × 10⁻¹⁹ J (allow 3.9 × 10⁻¹⁹ J) (c) (i) photon energy larger so (maximum) kinetic energy is larger (ii) fewer photons (per unit time) so (maximum) current is smaller (a) (i) Fe shown near peak (ii) Zr shown about half-way along plateau (iii) H shown at less than 0.4 of maximum height (b) (i) heavy / large nucleus breaks up / splits into two nuclei / fragments of approximately equal mass (iii) binding energy of nucleus = B_E × A binding energy of parent nucleus is less than sum of binding energies 	GCE AS/A LEVEL – May/June 2011 9702 41 (a) for a wave, electron can 'collect' energy continuously for a wave, electron will always be emitted / electron will be emitted at all frequencies B1 (b) (i) either wavelength is longer than threshold wavelength or frequency is below the threshold frequency or photon energy is less than work function B1 (ii) $hc/\lambda = \phi + E_{MAX}$ $(6.63 \times 10^{-34} \times 3.0 \times 10^8) / (240 \times 10^{-9}) = \phi + 4.44 \times 10^{-19}$ C1 $\phi = 3.8 \times 10^{-19} \text{ J (allow } 3.9 \times 10^{-19} \text{ J)}$ A1 (c) (i) photon energy larger so (maximum) kinetic energy is larger M1 (ii) fewer photons (per unit time) so (maximum) current is smaller M1 (a) (i) Fe shown near peak A1 (ii) Zr shown about half-way along plateau A1 (iii) H shown at less than 0.4 of maximum height A1 (b) (i) heavy / large nucleus breaks up / splits into two nuclei / fragments of approximately equal mass M1 (ii) binding energy of nucleus = $B_E \times A$ binding energy of parent nucleus is less than sum of binding energies B1

Sec	ction	В		
9	(a)	to compare two potentials / voltages output depends upon which is greater	M1 A1	[2]
	(b)	(i) resistance of thermistor = $2.5 \mathrm{k}\Omega$ resistance of X = $2.5 \mathrm{k}\Omega$	C1 A1	[2]
		(ii) at 5 °C / at < 10 °C, $V^- > V^+$ so V_{OUT} is -9 V at 20 °C / at > 10 °C, $V^- < V^+$ and V_{OUT} is +9 V V_{OUT} switches between negative and positive at 10 °C	M1 A1 B1 B1	[4]
		(allow similar scheme if 20 °C treated first)	Di	ניין
10	(a)	product of density (of medium) and speed of sound (in the medium)	B1	[1]
	(b)	α would be nearly equal to 1 either reflected intensity would be nearly equal to incident intensity	M1	
		or coefficient for transmitted intensity = $(1 - \alpha)$ transmitted intensity would be small	M1 A1	[3]
	(c)	(i) $\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2$ = 0.018	C1 A1	[2]
		(ii) attenuation in fat = $\exp(-48 \times 2x \times 10^{-2})$ $0.012 = 0.018 \exp(-48 \times 2x \times 10^{-2})$ x = 0.42 cm	C1 C1 A1	[3]
11	(a)	frequency of carrier wave varies (in synchrony) with the displacement of the information signal	M1 A1	[2]
	(b)	(i) 5.0 V	A1	[1]
		(ii) 640 kHz	A1	[1]
		(iii) 560 kHz	A1	[1]
		(iv) 7000 (condone unit)	A1	[1]
12	(a)	e.g. acts as 'return' for the signal shields inner core from noise / interference / cross-talk (any two sensible answers, 1 each, max 2)	B2	[2]
	(b)	e.g. greater bandwidth less attenuation (per unit length) less noise / interference (any two sensible answers, 1 each, max 2)	B2	[2]
	(c)	attenuation is 2.4 dB attenuation = $10 \lg(P_1/P_2)$ ratio = 1.7	C1 C1 A1	[3]

Mark Scheme: Teachers' version

GCE AS/A LEVEL – May/June 2011

Syllabus

9702

Paper

41

Page 5