MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/42
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	42

Section A

1 (a) region (of space) where a particle / body experiences a force
B1
(b) similarity: e.g. force $\propto 1 / r^{2}$
potential $\propto 1 / r$
B1
difference: e.g. gravitation force (always) attractive B1
electric force attractive or repulsive
B1
$\begin{aligned} \text { (c) either } & \text { ratio is } Q_{1} Q_{2} / 4 \pi \varepsilon_{0} m_{1} m_{2} G \\ & =\left(1.6 \times 10^{-19}\right)^{2} / 4 \pi \times 8.85 \times 10^{-12} \times\left(1.67 \times 10^{-27}\right)^{2} \times 6.67 \times 10^{-11} \\ & =1.2 \times 10^{36} \\ \text { or } \quad & F_{\mathrm{E}}=2.30 \times 10^{-28} \times R^{-2} \\ & F_{\mathrm{G}}=1.86 \times 10^{-64} \times R^{-2} \\ & \mathrm{~F}_{\mathrm{E}} / F_{\mathrm{G}}=1.2 \times 10^{36} \\ & \text { (A1) }\end{aligned}$
C1
C1
A1

2 (a) amount of substance
containing same number of particles as in 0.012 kg of carbon-12
(b) $p V=n R T$

C1
amount $=\left(2.3 \times 10^{5} \times 3.1 \times 10^{-3}\right) /(8.31 \times 290)$
$+\left(2.3 \times 10^{5} \times 4.6 \times 10^{-3}\right) /(8.31 \times 303)$
C1
$=0.296+0.420$
C1
$=0.716 \mathrm{~mol}$ A1
(give full credit for starting equation $p V=N k T$ and $N=n N_{\mathrm{A}}$)

3 (a) charges on plates are equal and opposite
so no resultant charge A1
energy stored because there is charge separation
(b) (i) capacitance $=Q / V$ C1

$$
\begin{aligned}
& =\left(18 \times 10^{-3}\right) / 10 \\
& =1800 \mu \mathrm{~F}
\end{aligned}
$$

A1
(ii) use of area under graph or energy $=1 / 2 \mathrm{CV}^{2}$
energy $=2.5 \times 15.7 \times 10^{-3}$ or energy $=1 / 2 \times 1800 \times 10^{-6} \times\left(10^{2}-7.5^{2}\right)$

$$
=39 \mathrm{~mJ}
$$

(c) combined capacitance of $\mathrm{Y} \& \mathrm{Z}=20 \mu \mathrm{~F}$ or total capacitance $=6.67 \mu \mathrm{~F}$ charge $=10 \times 10^{-6} \times 8$ or $6.67 \times 10^{-6} \times 12$

$$
=80 \mu \mathrm{C}
$$

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	42

4 (a) $+\Delta U$: increase in internal energy B1
$+q$: thermal energy / heat supplied to the system B1
$+w$: work done on the system
B1
[3]
$\begin{array}{ll}\text { (b) (i) } \begin{array}{l}\text { (thermal) energy required to change the state of a substance } \\ \text { per unit mass } \\ \text { without any change of temperature }\end{array} & \text { M1 } \\ & \text { A1 } \\ \text { A1 }\end{array}$
(ii) when evaporating
greater change in separation of atoms/molecules M1
greater change in volume
M1
identifies each difference correctly with ΔU and w
A1
酸
5 (a) (i) (induced) e.m.f. proportional to M1
rate of change of (magnetic) flux (linkage) / rate of flux cutting A1
$\begin{array}{ll}\text { (ii) 1. moving magnet causes change of flux linkage } & \mathrm{B} 1 \\ \text { 2. speed of magnet varies so varying rate of change of flux } & \mathrm{B} 1\end{array}$
3. magnet changes direction of motion (so current changes direction)

B1
(b) period $=0.75 \mathrm{~s}$ C1
frequency $=1.33 \mathrm{~Hz}$
A1
[2]
$\begin{array}{ll}\text { (c) graph: smooth correctly shaped curve with peak at } f_{0} & \text { M1 } \\ \text { A never zero } & \text { A1 }\end{array}$
A never zero
(d) (i) resonance B1
(ii) e.g. quartz crystal for timing / production of ultrasound A1

6 (a) (i) $2 \pi f=380$
C1
frequency $=60 \mathrm{~Hz}$
A1
(ii) $\begin{array}{rlr}I_{\text {RMS }} & \times \sqrt{ } 2=I_{0} & \mathrm{C} 1 \\ I_{\text {RMS }} & =9.9 / \sqrt{ } 2 & \\ & =7.0 \mathrm{~A} & \mathrm{~A} 1\end{array}$
(b) power $=I^{2} R$
$\begin{aligned} R & =400 / 7.0^{2} \\ & =8.2 \Omega\end{aligned}$

$$
=8.2 \Omega
$$

[2]
[2]
[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	42

7 (a) wavelength of wave associated with a particle M1
that is moving
(b) (i) energy of electron $=850 \times 1.6 \times 10^{-19}$

$$
=1.36 \times 10^{-16} \mathrm{~J}
$$

energy $=p^{2} / 2 m$ or $p=m v$ and $E_{\mathrm{K}}=1 / 2 m v^{2}$
momentum $=\sqrt{ }\left(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31}\right) \quad \mathrm{M} 1$
$=1.6 \times 10^{-23} \mathrm{Ns} \quad$ A0
(ii) $\lambda=h / p$
wavelength $=\left(6.63 \times 10^{-34}\right) /\left(1.6 \times 10^{-23}\right)$

$$
=4.1 \times 10^{-11} \mathrm{~m}
$$

(c) diagram or description showing:
electron beam in a vacuum
incident on thin metal target / carbon film B1
fluorescent screen B1
pattern of concentric rings observed M1
pattern similar to diffraction pattern observed with visible light A1

8 (a) energy required to separate nucleons in a nucleus M1
to infinity
A1
(b) $1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$
$E=m c^{2}$
$=1.66 \times 10^{-27} \times\left(3.0 \times 10^{8}\right)^{2} \quad$ M1
$=1.49 \times 10^{-10} \mathrm{~J}$
$=\left(1.49 \times 10^{-10}\right) /\left(1.6 \times 10^{-13}\right)$
$=930 \mathrm{MeV}$
(c) (i) $\begin{aligned} \Delta m & =2.0141 \mathrm{u}-(1.0073+1.0087) \mathrm{u} \\ & =-1.9 \times 10^{-3} \mathrm{u}\end{aligned}$ binding energy $=1.9 \times 10^{-3} \times 930$ $=1.8 \mathrm{MeV}$
(ii) $\begin{array}{rlrl}\Delta m & =(57 \times 1.0087 \mathrm{u})+(40 \times 1.0073 \mathrm{u})-97.0980 \mathrm{u} & & \mathrm{C} 1 \\ & =(-) 0.69 \mathrm{u} & & \\ \text { binding energy per nucleon } & =(0.69 \times 930) / 97 & \mathrm{C} 1 \\ & =6.61 \mathrm{MeV} & \mathrm{A} 1\end{array}$

$$
=6.61 \mathrm{MeV} \quad \text { A1 }
$$

A1

B1
[2]

C1

M1
A0

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	42

Section B

9 (a) thin / fine metal wire
B1
lay-out shown as a grid B1
encased in plastic B1
(b) (i) gain (of amplifier)

B1
(ii) for $V_{\text {OUT }}=0$, then $V^{+}=V^{-}$or $V_{1}=V_{2}$

C1
$V_{1}=(1000 / 1125) \times 4.5$
C1
$V_{1}=4.0 \mathrm{~V}$ A1
(iii) $\quad V_{2}=(1000 / 1128) \times 4.5$

$$
\begin{aligned}
= & 3.99 \mathrm{~V} \\
V_{\text {OUT }} & =12 \times(3.99-4.00) \\
& =(-) 0.12 \mathrm{~V}
\end{aligned}
$$

A1
C1

10 strong / large (uniform) magnetic field B1
nuclei precess / rotate about field direction
(1)
radio frequency pulse
B1
at Larmor frequency
(1)
causes resonance / nuclei absorb energy
B1
on relaxation / de-excitation, nuclei emit r.f. pulse B1
pulse detected and processed
non-uniform field superposed on uniform field
B1
allows position of resonating nuclei to be determined B1
allows for location of detection to be changed
(six points, 1 each plus any two extra - max 8)

11 (a) e.g. unreliable communication
because ion layers vary in height / density
e.g. cannot carry all information required
bandwidth too narrow
e.g. coverage limited
reception poor in hilly areas
(b) signal must be amplified (greatly) before transmission back to Earth B1 uplink signal would be swamped by downlink signal B1

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9702	42

12 (a) (i) ratio $/ \mathrm{dB}=10 \lg \left(P_{1} / P_{2}\right)$
C1
$\begin{array}{ll}24=10 \mathrm{Ig}\left(P_{1} /\left\{5.6 \times 10^{-19}\right\}\right) & \mathrm{C} 1 \\ P_{1}=1.4 \times 10^{-16} \mathrm{~W} & \mathrm{~A} 1\end{array}$
[3]
(ii) attenuation per unit length $=1 / L \times 10 \lg \left(P_{1} / P_{2}\right)$
$1.9=1 / L \times 10 \lg \left(\left\{3.5 \times 10^{-3}\right\} /\left\{1.4 \times 10^{-16}\right\}\right)$
$L=1 \mathrm{~km}$
C1
A
or
attenuation $=10 \lg \left(\left\{3.5 \times 10^{-3}\right\} /\left\{5.6 \times 10^{-19}\right\}\right)$
attenuation along fibre $=(158-24)$
$L=(158-24) / 1.9=71 \mathrm{~km}$
(b) less attenuation (per unit length) / longer uninterrupted length of fibre

