MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		ige 2	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011 9702		43	
See	ctior	n A				
1	(a)	region (of space) where a particle / body experiences a force		B1	[1]
	(b)	similarit	y: e.g. force $\propto 1 / r^2$ potential $\propto 1 / r$		B1	[1]
		differen	ce: e.g. gravitation force (always) attractive electric force attractive or repulsive		B1 B1	[2]
	(c)	or I	ratio is $Q_1Q_2 / 4\pi\epsilon_0 m_1m_2G$ = $(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.6$ = 1.2×10^{36} $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)	67 × 10 ⁻¹¹	C1 C1 A1	[3]
2	(a)		of substance ng same number of particles as in 0.012kg of carbon-12	2	M1 A1	[2]
	(b)	+ (2.3 × = 0.296 = 0.716	= $(2.3 \times 10^5 \times 3.1 \times 10^{-3}) / (8.31 \times 290)$ $10^5 \times 4.6 \times 10^{-3}) / (8.31 \times 303)$ + 0.420		C1 C1 C1 A1	[4]
3	(a)	so no re	on plates are equal and opposite esultant charge stored because there is charge separation		M1 A1 B1	[3]
	(b)	(i) cap	pacitance = Q / V = $(18 \times 10^{-3}) / 10$		C1	101
		(11)	= 1800 μ F		A1	[2]
			e of area under graph or energy = $\frac{1}{2}CV^2$ ergy = 2.5 × 15.7 × 10 ⁻³ or energy = $\frac{1}{2}$ × 1800 × 10 ⁻⁶ × = 39 mJ	(10 ² - 7.5 ²)	C1 A1	[2]
	(c)	p.d. acr charge :	ed capacitance of Y & Z = $20 \mu F$ or total capacitance = oss capacitor X = 8V or p.d. across combination = $12 \sqrt{10^{-6} \times 8}$ or $6.67 \times 10^{-6} \times 12$ = $80 \mu C$		C1 C1 A1	[2]
		-	- σομο			[3]

	Page 3		6	Mark Scheme: Teachers' version	Syllabus	Paper	
	4 (a) +∆ <i>U</i> : increase in + <i>q</i> : thermal ener			GCE AS/A LEVEL – May/June 2011	9702	43	
4			thern	rease in internal energy nal energy / heat supplied to the system a done on the system		B1 B1 B1	[3]
	(b)	(i)	per	rmal) energy required to change the state of a substan unit mass out any change of temperature	се	M1 A1 A1	[3]
		(ii)	grea grea	n evaporating ater change in separation of atoms/molecules ater change in volume tifies each difference correctly with ΔU and w		M1 M1 A1	[3]
5	(a)	(i)	•	uced) e.m.f. proportional to of change of (magnetic) flux (linkage) / rate of flux cutt	ing	M1 A1	[2]
		(ii)	2. sp	noving magnet causes change of flux linkage beed of magnet varies so varying rate of change of flux nagnet changes direction of motion (so current changes		B1 B1 B1	[1] [1] [1]
	(b)			0.75s sy = 1.33Hz		C1 A1	[2]
	(c)	gra		mooth correctly shaped curve with peak at f_0 I never zero		M1 A1	[2]
	(d)	(i)	reso	nance		B1	[1]
		(ii)	e.g.	quartz crystal for timing / production of ultrasound		A1	[1]
6	(a)	(i)		= 380 uency = 60 Hz		C1 A1	[2]
		(ii)		$ \times \sqrt{2} = I_0 $ = 9.9 / $\sqrt{2}$		C1	
			- 1 (10)	= 7.0A		A1	[2]
	(b)	pov P -	ver =	I ² R / 7.0 ²		C1	
			: 400 : 8.2			A1	[2]

	Pa	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper 43	
				GCE AS/A LEVEL – May/June 2011	9702		
7	(a)	wavelength of wave associated with a particle that is moving			M1 A1	[2]	
	(b)	(i)		rgy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J rgy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ mentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = 1.6×10^{-23} N s		M1 M1 A0	[2]
		(ii)	$\lambda = I$ wave			C1	[2]
				$= 4.1 \times 10^{-11} \text{ m}$		A1	[2]
	(c)	elec incie fluo patt	ctron dent o resce ern o	or description showing: beam in a vacuum on <u>thin</u> metal target / carbon <u>film</u> ent screen f concentric rings observed imilar to diffraction pattern observed with visible light		B1 B1 B1 M1 A1	[5]
8	(a)	ene		equired to separate nucleons in a <u>nucleus</u>		M1 A1	[2]
	(b)	E = = = =	<i>mc</i> ² 1.66 1.49	5 × 10 ⁻²⁷ kg × 10 ⁻²⁷ × (3.0 × 10 ⁸) ² × 10 ⁻¹⁰ J 9 × 10 ⁻¹⁰) / (1.6 × 10 ⁻¹³) MeV		C1 M1 M1 A0	[3]
	(c)	(i)	:	= $2.0141u - (1.0073 + 1.0087)u$ = $-1.9 \times 10^{-3}u$ ing energy = $1.9 \times 10^{-3} \times 930$ = 1.8MeV		C1 A1	[2]
		(ii)	:	= (57 × 1.0087u) + (40 × 1.0073u) – 97.0980u = (–)0.69 u		C1	
			bind	ing energy per nucleon = (0.69 × 930) / 97 = 6.61 MeV		C1 A1	[3]

	Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2011		43	
Sec	ction B				
9	(a) <u>thin / fine</u> metal wire lay-out shown as a grid encased in plastic				[3]
	(b) (i) gain	(of amplifier)		B1	[1]
	$V_1 =$	$V_{OUT} = 0$, then $V^+ = V^-$ or $V_1 = V_2$ (1000/1125) × 4.5 4.0 V		C1 C1 A1	[3]
	=	$(1000 / 1128) \times 4.5$ 3.99 V = 12 × (3.99 - 4.00) = (-) 0.12 V		C1 A1	[2]
10	strong / large nuclei preces radio frequer at Larmor fre causes resor on relaxation pulse detecte non-uniform allows positio allows for loc (<i>six points, 1</i>	B1 B1 B1 B1 B1 B1	[8]		
11	beca e.g. canr band e.g. cove rece	eliable communication ause ion layers vary in height / density not carry all information required dwidth too narrow erage limited eption poor in hilly areas sensible suggestions, M1 & A1 for each, max 4)	(M1) (A1) (M1) (A1) (M1) (A1)		[4]
		ust be amplified (greatly) before transmission bac gnal would be swamped by <u>downlink</u> signal	k to Earth	B1 B1	[2]

Page (6 Mark Scheme: Teachers' version		Syllabus	Pap	Paper	
		GCE AS/A LEVEL – May/June 2011	9702	43		
12 (a) (i)	24 =	$d / dB = 10 \log(P_1 / P_2)$ = $10 \log(P_1 / \{5.6 \times 10^{-19}\})$ = $1.4 \times 10^{-16} W$		C1 C1 A1	[3]	
(ii)	atter 1.9 = <i>L</i> = 1	nuation per unit length = 1 / <i>L</i> × 10 lg(<i>P</i> ₁ / <i>P</i> ₂) = 1 / <i>L</i> × 10 lg({3.5 × 10 ⁻³ }/{1.4 × 10 ⁻¹⁶ }) 1 km		C1 C1 A1	[3]	
	<i>or</i> atter	nuation = 10 lg({3.5 × 10 ⁻³ }/{5.6 × 10 ⁻¹⁹ }) = 158 dB	(C1)			
		nuation along fibre = (158 – 24) (158 – 24) / 1.9 = 71 km	(C1) (A1)			
(b) les	s atte	nuation (per unit length) / longer uninterrupted l	ength of fibre	B1	[1]	