UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pa	ige 2		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2012	9702	23	
1	(a)	disp mo	olace ved /	ment is a vector, distance is a scalar ment is straight line between two points / distance example showing difference ne of the definitions for the second mark)	e is sum of len	B1 gths B1	[2]
	(b)		a body continues at rest or at constant velocity unless acted on by a <u>resultant</u> (external) force				
	(c)	(i)	thes	of T_1 and T_2 equals frictional force se two forces are in opposite directions ow for 1/2 for travelling in straight line hence no rotate)	tation / no resu	B1 B1 <i>Itant</i>	[2]
		(ii)	1.	scale vector triangle with correct orientation / vector orientation both with arrows scale given or mathematical analysis for tensions	triangle with co	rrect B1 B1	[2]
			2.	$T_1 = 10.1 \times 10^3 (\pm 0.5 \times 10^3) \text{ N}$ $T_2 = 16.4 \times 10^3 (\pm 0.5 \times 10^3) \text{ N}$		A1 A1	[2]
2	(a)	con	npon	: 452 × 9.81 ent down the slope = 452 × 9.81 × sin 14° 7 = 1070 N		M1 A0	[1]
	(b)	(i)		ma (1070 + 525) = 452 × 0.13 1650 (1653.76)N any forces missing 1/3		C1 C1 A1	[3]
		(ii)	1.	$s = ut + \frac{1}{2}at^2$ hence $10 = 0 + \frac{1}{2} \times 0.13t^2$ $t = [(2 \times 10) / 0.13]^{1/2} = 12.4$ or 12 s		C1 A1	[2]
			2.	$v = (0 + 2 \times 0.13 \times 10)^{1/2} = 1.61 \text{ or } 1.6 \text{ m s}^{-1}$		A1	[1]
	(c)	line line	dow less	line from the origin in to zero velocity in short time compared to stage 1 steep negative gradient ocity larger than final velocity in the first part – at least 2	<u>2</u> ×	B1 B1 B1 B1	[4]

3 (a)
$$V = h \times A$$

 $m = V \times \rho$
 $W = h \times A \times \rho \times g$
 $P = F / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 $P = h \rho g$
 $P = f / A$
 P

(b) density changes with height hence density is not constant with link to formula B1 [2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – Mav/June 2012	9702	23

4 (a) electric field strength is the force <u>per unit positive</u> charge (acting on a stationary charge)

B1 [1]

(b) (i)
$$E = V/d$$
 C1
= $1200 / 14 \times 10^{-3}$
= $8.57 \times 10^{4} \text{V m}^{-1}$ A1 [2]

(ii)
$$W = QV$$
 or $W = F \times d$ and therefore $W = E \times Q \times d$
= $3.2 \times 10^{-19} \times 1200$
= 3.84×10^{-16} J A1 [2]

(iii)
$$\Delta U = mgh$$
 C1
= $6.6 \times 10^{-27} \times 9.8 \times 14 \times 10^{-3}$
= $9.06 \times 10^{-28} \,\text{J}$ A1 [2]

(iv)
$$\Delta K = 3.84 \times 10^{-16} - \Delta U$$

= $3.84 \times 10^{-16} \text{ J}$ A1 [1]

(v)
$$K = \frac{1}{2}mv^2$$
 C1
 $v = [(2 \times 3.8 \times 10^{-16}) / 6.6 \times 10^{-27}]^{1/2}$
 $= 3.4 \times 10^5 \,\text{m s}^{-1}$ A1 [2]

(b) (i)
$$\Sigma E = \Sigma IR$$

 $20 - 12 = 2.0(0.6 + R)$ (not used 3 resistors 0/2) C1
 $R = 3.4 \Omega$ A1 [2]

(ii)
$$P = EI$$

= 20×2
= 40 W C1

(iii)
$$P = I^2R$$
 C1
 $P = (2)^2 \times (0.1 + 0.5 + 3.4)$
 $= 16 \text{ W}$ A1 [2]

(iv) efficiency = useful power / output power
$$24 / 40 = 0.6$$
 or $12 \times 2 / 20 \times 2$ or 60% C1 A1 [2]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9702	23	
6	(a)		action bending/spreading of light at edge/slit occurs at each slit		B1 B1	[2]
		(ii) cons	stant phase difference between each of the waves		B1	[1]
	(en the waves meet) the resultant displacement is lacements of each wave	s the sum of	the B1	[1]
	(b)	n = 3.52	$= 1 / 450 \times 103 \times 630 \times 10^{-9}$		C1 M1 A1	[3]
	(c)	more ord	less than λ red ders seen der is at a smaller angle than for the equivalent red		M1 A1 A1	[3]
7	(a)	addition	er reduces count rate hence α of 1 cm of aluminium causes little more count rate rediation is γ	eduction hence	B1 only B1	[2]
	(b)	look for	c field perpendicular to direction of radiation a count rate in expected direction / area if there were no radiation present. If no count rate recorded then β not	•	B1 B1	[2]