MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/42
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	42

Section A

1 (a) force proportional to product of masses and inversely proportional to square of separation (do not allow square of distance/radius)

M1 either point masses or separation @ size of masses
(b) (i) $\omega=2 \pi /(27.3 \times 24 \times 3600)$ or $2 \pi /\left(2.36 \times 10^{6}\right)$

M1
$=2.66 \times 10^{-6} \mathrm{rad} \mathrm{s}^{-1}$
A0
(ii) $G M=r^{3} \omega^{2}$ or $G M=v^{2} r$

C1
$M=\left(3.84 \times 10^{5} \times 10^{3}\right)^{3} \times\left(2.66 \times 10^{-6}\right)^{2} /\left(6.67 \times 10^{-11}\right)$
M1
$=6.0 \times 10^{24} \mathrm{~kg}$
AO
(special case: uses $g=G M / r^{2}$ with $g=9.81, r=6.4 \times 10^{6}$ scores max 1 mark)
(c) (i) grav. force $=\left(6.0 \times 10^{24}\right) \times\left(7.4 \times 10^{22}\right) \times\left(6.67 \times 10^{-11}\right) /\left(3.84 \times 10^{8}\right)^{2} \quad \mathrm{C} 1$

$$
\left.=2.0 \times 10^{20} \mathrm{~N} \text { (allow } 1 \mathrm{SF}\right)
$$

A1
(ii) either $\Delta E_{\mathrm{P}}=F x$ because F constant as x ! radius of orbit B1
$\Delta E_{\mathrm{P}}=2.0 \times 10^{20} \times 4.0 \times 10^{-2} \quad \mathrm{C} 1$
$=8.0 \times 10^{18} \mathrm{~J}$ (allow 1 SF)
A1
or $\quad \Delta E_{P}=G M m / r_{1}-G M m / r_{2}$
C1
Correct substitution B1
$8.0 \times 10^{18} \mathrm{~J}$ A1
$\left(\Delta E_{\mathrm{P}}=G M m / r_{1}+G M m / r_{2}\right.$ is incorrect physics so $\left.0 / 3\right)$

2 (a) energy $=1 / 2 m \omega^{2} a^{2}$ and $\omega=2 \pi f$
C1

$$
=1 / 2 \times 37 \times 10^{-3} \times(2 \pi \times 3.5)^{2} \times\left(2.8 \times 10^{-2}\right)^{2}
$$

$$
=7.0 \times 10^{-3} \mathrm{~J}
$$

(allow $2 \pi \times 3.5$ shown as 7π)
Energy $=1 / 2 m v^{2}$ and $v=r \omega$
Correct substitution
Energy $=7.0 \times 10^{-3} \mathrm{~J}$
(b) $E_{K}=E_{P}$
$1 / 2 m \omega^{2}\left(a^{2}-x^{2}\right)=1 / 2 m \omega^{2} x^{2}$ or E_{K} or $E_{P}=3.5 \mathrm{~mJ}$
C1
$x=a / \sqrt{ } 2=2.8 / \sqrt{ } 2 \quad$ or $E_{K}=1 / 2 m \omega^{2}\left(a^{2}-x^{2}\right)$
or $E_{\mathrm{P}}=1 / 2 m \omega^{2} x^{2}$
C1
$=2.0 \mathrm{~cm}$
A1
(E_{K} or $E_{\mathrm{P}}=7.0 \mathrm{~mJ}$ scores $0 / 3$)

$$
\text { Allow: } \begin{array}{ll}
& k=17.9 \\
& E=1 / 2 k x^{2} \tag{C1}\\
& x=2.0 \mathrm{~cm}
\end{array}
$$

(A1)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	$\mathbf{4 2}$

(c) (i) graph: horizontal line, y-intercept $=7.0 \mathrm{~mJ}$ with end-points of line at
+2.8 cm and -2.8 cm
B1
(ii) graph: reasonable curve B1
with maximum at $(0,7.0)$ end-points of line at $(-2.8,0)$
and ($+2.8,0$)
B1
(iii) graph: inverted version of (ii) M1
with intersections at ($-2.0,3.5$) and (+2.0, 3.5) A1
(Allow marks in (iii), but not in (ii), if graphs $\mathrm{K} \& \mathrm{P}$ are not labelled)
(d) gravitational potential energy

B1

3 (a) sum of potential energy and kinetic energy of atoms/molecules/particles reference to random (distribution)

A1
(b) (i) as lattice structure is 'broken'/bonds broken/forces between molecules reduced (not molecules separate)

B1
no change in kinetic energy, potential energy increases M1
internal energy increases
A1
$\begin{array}{llll}\text { (ii) either } & \begin{array}{l}\text { molecules/atoms/particles move faster } /\left\langle c^{2}\right\rangle \text { is increasing } \\ \text { or }\end{array} & \text { kinetic energy increases with temperature (increases) } & \text { B1 }\end{array}$
no change in potential energy, kinetic energy increases M1
internal energy increases
A1

4 (a) (i) as r decreases, energy decreases/work got out (due to) M1
attraction so point mass is negatively charged
A1
(ii) electric potential energy $=$ charge \times electric potential B1 electric field strength is potential gradient B1 field strength = gradient of potential energy graph/charge A0
(b) tangent drawn at (4.0, 14.5) B1
gradient $=3.6 \times 10^{-24}$
A2
(for $< \pm 0.3$ allow 2 marks, for $< \pm 0.6$ allow 1 mark)
field strength $=\left(3.6 \times 10^{-24}\right) /\left(1.6 \times 10^{-19}\right)$

$$
=2.3 \times 10^{-5} \mathrm{Vm}^{-1} \text { (allow ecf from gradient value) A1 }
$$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	42

5 (a) (long) straight conductor carrying current of $1 \mathrm{~A} \quad$ M1 (for flux density 1 T ,) force per unit length is $1 \mathrm{Nm}^{-1}$
$\begin{array}{ll}\text { (b) (i) } \begin{array}{ll}\text { (originally) downward force on magnet (due to current) } & \mathrm{B} 1 \\ & \text { by Newton's third law (allow " } \mathrm{N} 3 \text { ") }\end{array} & \mathrm{M} 1\end{array}$ upward force on wire A1
(ii) $F=B I L$
$2.4 \times 10^{-3} \times 9.8=B \times 5.6 \times 6.4 \times 10^{-2}$
$B=0.066 \mathrm{~T}$ (need 2SF)
(g missing scores 0/2, but $g=10$ leading to $0.067 T$ scores $1 / 2$)
(c) new reading is $2.4 \sqrt{ } 2 \mathrm{~g}$
either changes between +3.4 g and -3.4 g
or total change is 6.8 g

6 (a) oil drop charged by friction/beta source
B1
between parallel metal plates B1
plates are horizontal
adjustable potential difference/field between plates
B1
until oil drop is stationary
B1
$m g=q \times V / d$ B1
symbols explained
oil drop viewed through microscope
m determined from terminal speed of drop (when p.d. is zero)
(any two extras, 1 each)
B2
(b) $3.2 \times 10^{-19} \mathrm{C}$

A1

7 (a) minimum energy to remove an electron from the metal/surface
B1
(b) gradient $=4.17 \times 10^{-15}$ (allow $\left.4.1 \rightarrow 4.3\right)$
$h=4.15 \times 10^{-15} \times 1.6 \times 10^{-19} \quad$ or $h=4.1$ to $4.3 \times 10^{-15} \mathrm{eVs} \quad \mathrm{A} 1$ $=6.6 \times 10^{-34} \mathrm{Js}$

A0
(c) graph: straight line parallel to given line with intercept at any higher frequency B1 intercept at between $6.9 \times 10^{14} \mathrm{~Hz}$ and $7.1 \times 10^{14} \mathrm{~Hz} \quad$ B1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	42

8 (a) $\frac{\text { nuclei having same number of protons/proton (atomic) number }}{\text { B1 }}$ different numbers of neutrons/neutron number B1
(allow second mark for nucleons/nucleon number/mass number/atomic mass if made clear that same number of protons/proton number)
(b) probability of decay per unit time is the decay constant

$$
\begin{aligned}
\lambda & =\ln 2 / t_{1 / 2} \\
& =0.693 /(52 \times 2 \\
& =1.54 \times 10^{-7} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
=0.693 /(52 \times 24 \times 3600) \quad \text { C1 }
$$

A1
(c) (i) $A=A_{0} \exp (-\lambda t)$
$7.4 \times 10^{6}=A_{0} \exp \left(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600\right) \quad \mathrm{C} 1$
$A_{0}=9.8 \times 10^{6} \mathrm{~Bq}$
A1
(alternative method uses 21 days as 0.404 half-lives)
(ii) $A=\lambda N$ and mass $=N \times 89 / N_{A}$
$\begin{aligned} \text { mass } & =\left(9.8 \times 10^{6} \times 89\right) /\left(1.54 \times 10^{-7} \times 6.02 \times 10^{23}\right) \\ & =9.4 \times 10^{-9} \mathrm{~g}\end{aligned}$ $=9.4 \times 10^{-9} \mathrm{~g}$ A1

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	42

Section B

9 (a) e.g. infinite input impedance/resistance zero output impedance/resistance
infinite (open loop) gain
infinite bandwidth
infinite slew rate
(any four, one mark each) B4
(b) graph: square wave M1
180° phase change A1
amplitude 5.0 V A1
(c) correct symbol for LED M1
diodes connected correctly between $\mathrm{V}_{\text {out }}$ and earth A1
diodes identified correctly A1
(special case: if diode symbol, not LED symbol, allow $2^{\text {nd }}$ and $3^{\text {rd }}$ marks to be scored)

10 (a) e.g. beam is divergent/obeys inverse square law
absorption (in block)
scattering (of beam in block)
reflection (at boundaries)
(any two sensible suggestions, 1 each) B2
(b) (i) $I=I_{0} \exp (-\mu x)$

C1
$I_{0} / I=\exp (0.27 \times 2.4)$
$=1.9 \quad \mathrm{~A} 1$
(ii) $I_{0} / I=\exp (0.27 \times 1.3) \times \exp (3.0 \times 1.1) \quad \mathrm{C} 1$

$$
\begin{aligned}
& =1.42 \times 27.1 \\
& =38.5
\end{aligned}
$$

A1
(c) either much greater absorption in bone than in soft tissue or $\quad I_{0} / I$ much greater for bone than soft tissue B1

11 (a) (i) loss of (signal) power B1
(ii) unwanted power (on signal) M1
that is random
A1
(b) for digital, only the 'high' and the 'low' / 1 and 0 are necessaryvariation between 'highs' and 'lows' caused by noise not required
A1
(c) attenuation $=10 \lg \left(P_{2} / P_{1}\right)$
C1
either $195=10 \lg \left(\left\{2.4 \times 10^{3}\right\} / P\right)$
or $\quad-195=10 \lg \left(P / 2.4 \times 10^{3}\right)$
C1
$P=7.6 \times 10^{-17} \mathrm{~W}$
A1

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9702	$\mathbf{4 2}$

12 (a) (i) modulator B1
(ii) serial-to-parallel converter (accept series-to-parallel converter)

B1
(b) (i) enables one aerial to be used for transmission and receipt of signals A1
(ii) all bits for one number arrive at one time B1 bits are sent out one after another B1

