UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	42

Section A					
(a)	square of separation (do not allow square of distance/radius)		2]		
(b)			1]		
	$M = (3.84 \times 10^5 \times 10^3)^3 \times (2.66 \times 10^{-6})^2 / (6.67 \times 10^{-11})$ = 6.0 × 10 ²⁴ kg	M1 A0 [2	2]		
(c)	() () () () () () () () () ()		2]		
	$\Delta E_{\rm P} = 2.0 \times 10^{20} \times 4.0 \times 10^{-2}$	C1	3]		
	Correct substitution	B1			
(a)	$= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^{2} \times (2.8 \times 10^{-2})^{2}$ $= 7.0 \times 10^{-3} \text{ J}$ (allow $2\pi \times 3.5$ shown as 7π) Energy = $\frac{1}{2} mv^{2}$ and $v = r\omega$ Correct substitution	M1 A0 [2 (C1) (M1)	<u>?]</u>		
(b)	$1/2m\omega^2 (a^2 - x^2) = 1/2m\omega^2 x^2$ or E_K or $E_P = 3.5 \text{mJ}$ $x = a/\sqrt{2} = 2.8 / \sqrt{2}$ or $E_K = 1/2m\omega^2 (a^2 - x^2)$ or $E_P = 1/2m\omega^2 x^2$ = 2.0 cm (E_K or $E_P = 7.0 \text{mJ}$ scores 0/3) Allow: $k = 17.9$ $E = 1/2 kx^2$	C1 A1 [3 (C1) (C1)	33]		
	(a) (b) (c)	(a) force proportional to product of masses and inversely proportional to square of separation (do not allow square of distance/radius) either point masses or separation ® size of masses (b) (i) $\omega = 2\pi / (27.3 \times 24 \times 3600)$ or $2\pi / (2.36 \times 10^6)$ = 2.66×10^{-6} rad s ⁻¹ (ii) $GM = r^3 \omega^2$ or $GM = v^2 r$ $M = (3.84 \times 10^5 \times 10^3)^3 \times (2.66 \times 10^{-6})^2 / (6.67 \times 10^{-11})$ = 6.0×10^{24} kg (special case: uses $g = GM/r^2$ with $g = 9.81$, $r = 6.4 \times 10^6$ scores max 1 m (c) (i) grav. force = $(6.0 \times 10^{24}) \times (7.4 \times 10^{22}) \times (6.67 \times 10^{-11}) / (3.84 \times 10^8)^2$ = 2.0×10^{20} N (allow 1 SF) (ii) either $\Delta E_P = Fx$ because F constant as $x \cdot 1$ radius of orbit $\Delta E_P = 2.0 \times 10^{20} \times 4.0 \times 10^{-2}$ = 8.0×10^{18} J (allow 1 SF) or $\Delta E_P = GMm/r_1 - GMm/r_2$ Correct substitution 8.0×10^{18} J (allow 1 SF) (a) energy = $\frac{1}{2}m\alpha^2 a^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ = 7.0×10^{-3} J (allow $2\pi \times 3.5$ shown as 7π) Energy = $\frac{1}{2}mv^2$ and $v = r\omega$ Correct substitution Energy = 7.0×10^{-3} J (1.00×10^{-3}) G (1.00×10^{-3}) Figure (1.00×10^{-3}) F	(a) force proportional to product of masses and inversely <u>proportional to</u> square of separation (<i>do not allow square of distance/radius</i>) wither point masses or separation (ⓐ size of masses (b) (i) $\omega = 2\pi / (27.3 \times 24 \times 3600)$ or $2\pi / (2.36 \times 10^6)$ $= 2.66 \times 10^{-6} \text{ rad s}^{-1}$ (ii) $GM = r^3 \omega^2$ or $GM = v^2 r$ $M = (3.84 \times 10^6 \times 10^8)^3 \times (2.66 \times 10^{-6})^2 / (6.67 \times 10^{-11})$ $= 6.0 \times 10^{26} \text{ kg}$ (special case: uses $g = GM/r^2$ with $g = 9.81$, $r = 6.4 \times 10^6$ scores max 1 mark) (c) (i) grav. force $= (6.0 \times 10^{24}) \times (7.4 \times 10^{22}) \times (6.67 \times 10^{-11}) / (3.84 \times 10^6)^2$ $= 2.0 \times 10^{20} \text{ N}$ ($allow 1 \text{ SF}$) (ii) $either \Delta E_P = Fx$ because F constant as $x!$ radius of orbit $\Delta E_P = 2.0 \times 10^{20} \times 4.0 \times 10^{-2}$ $= 8.0 \times 10^{18} \text{ J}$ ($allow 1 \text{ SF}$) or $\Delta E_P = GMm/r_1 - GMm/r_2$ $\Delta E_P = GMm/r_1 + GMm/r_2$ is incorrect physics so 0/3) (a) energy $= \frac{1}{2}m\omega^2 a^2$ and $\omega = 2\pi f$ $= \frac{1}{2}\frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $= \frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2\pi \times 3$		

	Page 3		3	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2012	9702	42	
	(c)	(i)	graph	horizontal line, <i>y</i> -intercept = 7.0 mJ with end-point +2.8 cm and –2.8 cm	s of line at B	1 [1]	
		(ii)	graph	with maximum at (0,7.0) end-points of line at (-2.			
				and (+2.8, 0)	В	1 [2]	
		(iii)	graph		M		
		(.	Allow m	with intersections at (–2.0, 3.5) and (+2.0, 3.5) narks in (iii), but not in (ii), if graphs K & P are not lab	A pelled)	1 [2]	
	(d)	gra	<u>vitation</u>	al potential energy	В	1 [1]	
3	(a)			ential energy and kinetic energy of atoms/molecules			
		refe	erence	to random (distribution)	Α	1 [2]	
	(b)	(i)	as latt	ice structure is 'broken'/bonds broken/forces betwee	n		
				ules reduced (not molecules separate)	В		
				ange in kinetic energy, potential energy increases al energy increases	M A		
			IIICIII	ar energy moreuses	7.	, [0]	
		(ii)	either	•	•		
			or	kinetic energy increases with temperature (increases	,		
				ange in potential energy, kinetic energy increases al energy increases	M A		
					,,	. [0]	
4	(a)	(i)	as r de	ecreases, energy decreases/work got out (due to)	М	11	
			<u>attract</u>	tion so point mass is negatively charged	Α	1 [2]	
		(ii)	electri	c potential energy = charge × electric potential	В	1	
		` '		c field strength is potential gradient	В	1	
			field s	trength = gradient of potential energy graph/charge	A	0 [2]	
	(b)	tan	gent dra	awn at (4.0, 14.5)	В		
		gradient = 3.6×10^{-24} (for $< \pm 0.3$ allow 2 marks, for $< \pm 0.6$ allow 1 mark)				2	
				gth= $(3.6 \times 10^{-24}) / (1.6 \times 10^{-19})$ = $2.3 \times 10^{-5} \text{V m}^{-1}$ (allow ecf from gradient value)	Α	1 [4]	
	(one point solution for gradient leading to $2.3 \times 10^{-5} \text{Vm}^{-1}$ scores 1 mark only)						

	Pa	ge 4 Mark Scheme: Teachers' version		Syllabus	Paper
			GCE AS/A LEVEL – May/June 2012	9702	42
5	(a)	current/v	raight conductor carrying current of 1A vire normal to magnetic field density 1T,) force per unit length is 1Nm ⁻¹	ſ	M1 M1 A1 [3]
	(b)	by N	inally) downward force on magnet (due to current) lewton's third law (allow "N3") ard force on wire	I	B1 M1 A1 [3]
		B =	BIL × 10 ⁻³ × 9.8 = B × 5.6 × 6.4 × 10 ⁻² 0.066T (need 2SF) nissing scores 0/2, but g = 10 leading to 0.067T scores 1/2	,	C1 A1 [2]
	(c)	either cl	ding is 2.4√2g nanges between +3.4g and −3.4g otal change is 6.8g		C1 A1 [2]
6	(a)	oil drop charged by friction/beta source between parallel <u>metal</u> plates plates are horizontal adjustable potential difference/field between plates until oil drop is stationary $mg = q \times V/d$ symbols explained oil drop viewed through microscope m determined from terminal speed of drop (when p.d. is zero) (any two extras, 1 each)		(1) (1) (1) (1) (1) (1)	B1 B1 B1 B1 B2 [7]
	(b)	3.2 × 10	- ¹⁹ C	,	A1 [1]
7	(a)	minimun	n energy to remove an electron from the metal/surface	I	B1 [1]
	(b)	gradient h = 4.15 = 6.6	= 4.17×10^{-15} (allow $4.1 \rightarrow 4.3$) $5 \times 10^{-15} \times 1.6 \times 10^{-19}$ or $h = 4.1$ to 4.3×10^{-15} <u>eVs</u> $\times 10^{-34}$ Js	,	C1 A1 A0 [2]
	(c)	•	straight line parallel to given line with intercept at any higher frequency intercept at between 6.9 × 10 ¹⁴ Hz and 7.1 × 10 ¹⁴ Hz		B1 B1 [3]

	Pa	ge 5		Mark Scheme: Teachers' version	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2012	9702	42
8	(a)	diffe (allo	rent w se	ving same number of protons/proton (atomic) number numbers of neutrons/neutron number cond mark for nucleons/nucleon number/mass numbe nade clear that same number of protons/proton numbe		· ·
	(b)	λ = =	In 2	ty of decay per unit time is the decay constant / $t_{\frac{1}{2}}$ 93 / (52 × 24 × 3600) $4 \times 10^{-7} \text{s}^{-1}$	C C A	:1
	(c)		$7.4 > A_0 =$	$A_0 \exp(-\lambda t)$ $\times 10^6 = A_0 \exp(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600)$ $9.8 \times 10^6 \text{ Bq}$ rnative method uses 21 days as 0.404 half-lives)	C A	
		(ii)	A = ,	λN and mass = $N \times 89 / N_A$ s = $(9.8 \times 10^6 \times 89) / (1.54 \times 10^{-7} \times 6.02 \times 10^{23})$	С	:1
			mas	$= 9.4 \times 10^{-9} g$	А	.1 [2]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	42

Section B

9	(a)	e.g. infinite input impedance/resistance zero output impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate (any four, one mark each)	B4	[4]
	(b)	graph: square wave 180° phase change amplitude 5.0 V	M1 A1 A1	[3]
	(c)	correct symbol for LED diodes connected correctly between V _{OUT} and earth diodes identified correctly (special case: if diode symbol, not LED symbol, allow 2 nd and 3 rd marks to be	M1 A1 A1 e scored)	[3]
10	(a)	e.g. beam is divergent/obeys inverse square law absorption (in block) scattering (of beam in block) reflection (at boundaries)		
		(any two sensible suggestions, 1 each)	B2	[2]
	(b)	(i) $I = I_0 \exp(-\mu x)$ $I_0/I = \exp(0.27 \times 2.4)$ = 1.9	C1 A1	[2]
		(ii) $I_0/I = \exp(0.27 \times 1.3) \times \exp(3.0 \times 1.1)$ = 1.42 × 27.1 = 38.5	C1 A1	[2]
		- 36.3	Ai	[۷]
	(c)	either much greater absorption in bone than in soft tissue or $I_{\rm o}/I$ much greater for bone than soft tissue	B1	[1]
11	(a)	(i) loss of (signal) power	B1	[1]
		(ii) unwanted power (on signal) that is random	M1 A1	[2]
	(b)	for digital, only the 'high' and the 'low' / 1 and 0 are necessary variation between 'highs' and 'lows' caused by noise not required	M1 A1	[2]
	(c)	attenuation = $10 \lg(P_2 / P_1)$	C1	
		either $195 = 10 \lg({2.4 \times 10^3}) / P)$ or $-195 = 10 \lg(P / 2.4 \times 10^3)$ $P = 7.6 \times 10^{-17} \text{ W}$	C1 A1	[3]

	Page 7		Mark Scheme: Teachers'	version Syllabus		Paper
			GCE AS/A LEVEL – May/Ju	une 2012 9702		42
12	(a) ((i)	modulator		B1	[1]
	(i	ii)	serial-to-parallel converter (accept series	-to-parallel converter)	B1	[1]
	(b) ((i)	enables one aerial to be used for transmi	ission and receipt of signals	A1	[1]
	(i	,	all bits for one number arrive at one time bits are sent out one after another		B1 B1	[2]