MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2013	9702	21

1 (a) the wire returns to its original length
(not 'shape')
(b) energy: $\mathrm{N} \mathrm{m} / \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ and volume m^{3}
energy / volume: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{m}^{3}$
C1
energy / volume: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
(c) ε has no units
$E: \mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}^{-2}$
units of RHS: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}=$ LHS units / satisfactory conclusion to show C has no units

2 (a) mass is the property of a body resisting changes in motion / quantity of matter in a body / measure of inertia to changes in motion
weight is the force due to the gravitational field/force due to gravity or gravitational force

Allow $1 / 2$ for 'mass is scalar weight is vector'
(b) (i) arrow vertically down through O tension forces in correct direction on rope
(ii) 1. weight $=m g=4.9 \times 9.81(=48.07)$
$69 \sin \theta=m g$
$\theta=44 .(1)^{\circ}$
scale drawing allow $\pm 2^{\circ}$
use of cos or tan $1 / 3$ only
2. $\begin{aligned} T & =69 \cos \theta \\ & =49.6 / 50 N\end{aligned}$
$=49.6 / 50 \mathrm{~N}$
scale drawing $50 \pm 2(2 / 2) \quad 50 \pm 4(1 / 2)$
correct answers obtained using scale diagram or triangle of forces will score full marks
cos in 1. then sin in 2. (2/2)

3 (a) loss in potential energy due to decrease in height (as P.E. $=m g h)$
gain in kinetic energy due to increase in speed (as K.E. $=1 / 2 m v^{2}$)
special case 'as PE decreases KE increases' (1/2)
increase in thermal energy due to work done against air resistance
loss in P.E. equals gain in K.E. and thermal energy

A0

B1

B1
C1
C1 A1

C1
A1

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	21

(b) (i) kinetic energy $=1 / 2 m v^{2}$ C1
$=1 / 2 \times 0.150 \times(25)^{2}$ C1

$$
=46.875=47 \mathrm{~J}
$$ A1

(ii) 1. potential energy $(=m g h)=0.150 \times 9.81 \times 21$ C1
loss $=$ KE $-m g h=46.875-$ (30.9) C1
$=15.97=16 \mathrm{~J}$ A1
2. work done $=16 \mathrm{~J}$
work done $=$ force \times distance C1
$F=16 / 21=0.76 \mathrm{~N}$ A1
4 (a) pressure = force / area (normal to force)A1
(b) molecules/atoms/particles in (constant) random/haphazard motion B1
molecules have a change in momentum when they collide with the walls M1
(force exerted on molecules) therefore force on the walls A1reference to average force from many molecules/many collisions A1A1
(c) elastic collision when kinetic energy conserved B1
temperature constant for gas B1
(a) waves overlap / meet / superpose
coherence / constant phase difference (not constant λ or frequency)
path difference $=0, \lambda, 2 \lambda$ or phase difference $=0,2 \pi, 4 \pi$
same direction of polarisation/unpolarised
5(B1)(B1)(B1)max. 3
(b) $\lambda=v / f$ C1
$f=12 \times 10^{9} \mathrm{~Hz}$ C1
$\lambda=3 \times 10^{8} / 12 \times 10^{9}$ (any subject) M1
$=0.025 \mathrm{~m}$ A0
(c) maximum at P B1
several minima or maxima between O and P
several minima or maxima between O and P B1 B1
5 maxima / 6 minima between O and P or 7 maxima / 6 minima including O and P B1
(d) slits made narrower B1slits put closer togetherB1(not just 'make slits smaller')Allow tilting the slits M1 and explanation of axes of rotation A1
[4]
[3]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	21

6 (a) (i) chemical to electrical
(ii) electrical to thermal / heat or heat and light
(b) (i) $\left(P_{\mathrm{B}}=\right) E I$ or $I^{2}\left(R_{1}+R_{2}\right)$

A1
(ii) $\left(P_{\mathrm{R}}=\right) I^{2} R_{1}$

A1
(c) $R=\rho l / A$ or clear from the following equation B1
ratio $=I^{2} R_{1} / I^{2} R_{2}=\frac{\rho l / \pi d^{2}}{\rho(2 l) / \pi(2 d)^{2}}$ or R_{1} has $8 \times$ resistance of R_{2} C1
$=8$ or $8: 1$
A1
(d) $P=V^{2} / R$ or E^{2} / R

C1
(V or E the same) hence ratio is $1 / 8$ or 1:8 $=0.125$ (allow ecf from (c)) A1

7 (a) the majority/most went straight through or were deviated by small anglesB1
a very small proportion/a few were deviated by large angles B1
small angles described as $<10^{\circ}$ and large angles described as $>90^{\circ}$
B1
(b) most of the atom is empty space/nucleus very small compared with atom B1 mass and charge concentrated in (very small) nucleus B1
correct links made with statements in (a) B1

