MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/23
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	23

1 (a) force: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
A1 [1]
(b) (i) $\begin{array}{ll}I^{2}: \mathrm{A}^{2} l: m \text { : } \mathrm{m} & \mathrm{C} 1 \\ & K: \mathrm{kg} \mathrm{m}^{-2} \mathrm{~A}^{-2}\end{array} \quad \mathrm{~A} 1$
(ii) curve of the correct shape (for inverse proportionality) M1 clearly approaching each axis but never touching the axis A1
(iii) curving upwards and through origin

A1

2 (a) (i) 1. distance of path / along line $A B$ B1
2. shortest distance between $A B$ / distance in straight line between $A B$ or displacement from A to B
(ii) acceleration = rate of change of velocity

A1
(b) (i) distance $=$ area under line or $(v / 2) t$ or $s=(8.8)^{2} /(2 \times 9.81)$ C1

$$
=8.8 / 2 \times 0.90=3.96 \mathrm{~m} \text { or } s=3.95 \mathrm{~m}=4(.0) \mathrm{m}
$$

(ii) acceleration $=(-4.4-8.8) / 0.50$

$$
=(-) 26(.4) \mathrm{m} \mathrm{~s}^{-2}
$$

(c) (i) the accelerations are constant as straight lines
the accelerations are the same as same gradient or
no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down)
(ii) area under the lines represents height
or KE at trampoline equals PE at maximum height
second area is smaller / velocity after rebound smaller hence KE less
hence less height means loss in potential energy

3 (a) (i) the total momentum of a system (of interacting bodies) remains constant provided there are no resultant external forces / isolated system
(ii) elastic: total kinetic energy is conserved, inelastic: loss of kinetic energy B1 [allow elastic: relative speed of approach equals relative speed of separation]

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	23

(b) (i) initial mom: $4.2 \times 3.6-1.2 \times 1.5 \quad(=15.12-1.8=13.3) \quad$ C1
final mom: $4.2 \times v+1.5 \times 3 \quad$ C1
$v=(13.3-4.5) / 4.2=2.1 \mathrm{~m} \mathrm{~s}^{-1} \quad$ A1
(ii) initial kinetic energy $=1 / 2 m_{A}\left(v_{A}\right)^{2}+1 / 2 m_{B}\left(v_{B}\right)^{2}$ $=27.21+1.08=28(.28)$ M1
final kinetic energy $=9.26+6.75=16$
initial KE is not the same as final KE hence inelastic A1
provided final KE less than initial KE
[allow in terms of relative speeds of approach and separation]

4 (a) (i) stress = force / cross-sectional area B1
(ii) strain $=$ extension $/$ original length

B1
(b) (i) $E=$ stress / strain

C1
$E=0.17 \times 10^{12}$
C1
stress $=0.17 \times 10^{12} \times 0.095 / 100$ C1

$$
=1.6(2) \times 10^{8} \mathrm{~Pa}
$$

(ii) force $=($ stress \times area $)=1.615 \times 10^{8} \times 0.18 \times 10^{-6}$

$$
=29(.1) \mathrm{N}
$$

C1
A1

5 (a) when waves overlap / meet
B1
the resultant displacement is the sum of the individual displacements of the waves
B1
(b) (i) 1. phase difference $=180^{\circ} /(n+1 / 2) 360^{\circ}$ (allow in rad)
2. phase difference $=0 / 360^{\circ} /\left(n 360^{\circ}\right)$ (allow in rad)
(ii) $v=f \lambda$
$\lambda=320 / 400=0.80 \mathrm{~m}$ A1
(iii) path difference $=7-5=2(\mathrm{~m})$

$$
=2.5 \lambda
$$

hence minimum
or maximum if phase change at P is suggested
A1
[2]

6 (a) p.d. = work done / energy transformed (from electrical to other forms) charge
(b) (i) maximum 20 V A1
(ii) minimum $=(600 / 1000) \times 20$ C1

$$
=12 \mathrm{~V}
$$

Page 4	Mark Scheme	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2013	9702	23

(c) (i) use of $1.2 \mathrm{k} \Omega$ M1
$1 / 1200+1 / 600=1 / R, R=400 \Omega \quad \mathrm{~A} 1$
$\begin{array}{lr}\text { (ii) total parallel resistance }\left(R_{2}+L D R\right) \text { is less than } R_{2} & \text { M1 } \\ \text { (minimum) p.d. is reduced } & \text { A1 }\end{array}$

7 (a) (i) nucleus contains 92 protons B1
nucleus contains 143 neutrons (missing 'nucleus' 1/2)
B1
outside / around nucleus 92 electrons
most of atom is empty space / mass concentrated in nucleus
total charge is zero
diameter of atom $\sim 10^{-10} \mathrm{~m}$ or size of nucleus $\sim 10^{-15} \mathrm{~m}$
any two of (B1) marks
$\begin{array}{ll}\text { (ii) nucleus has same number / 92 protons } & \text { B1 } \\ \text { nuclei have } 143 \text { and } 146 \text { neutrons (missing 'nucleus' 1/2) } & \text { B1 }\end{array}$
nuclei have 143 and 146 neutrons (missing 'nucleus' 1/2)
(b) (i) $Y=35$ A1
$Z=85$
A1
(ii) mass-energy is conserved in the reaction
explained in terms of $E=m c^{2}$
B1

mass on rhs of reaction is less so energy is released

20

