MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	41

Section A

1 (a) region of space area / volume
B1 where a mass experiences a force B1
(b) (i) force proportional to product of two masses M1
force inversely proportional to the square of their separation M1
either reference to point masses or separation >> 'size' of masses
A1
(ii) field strength $=G M / x^{2}$ or field strength $\propto 1 / x^{2} \quad$ C1
ratio $=\left(7.78 \times 10^{8}\right)^{2} /\left(1.5 \times 10^{8}\right)^{2}$ C1

$$
=27
$$

A1
(c) (i) either centripetal force $=m R \omega^{2}$ and $\omega=2 \pi / T$ or centripetal force $=m v^{2} / R$ and $v=2 \pi R / T$B1
gravitational force provides the centripetal force $\quad \mathrm{B} 1$
either $G M m / R^{2}=m R \omega^{2}$ or $G M m / R^{2}=m v^{2} / R$ M1
$M=4 \pi^{2} R^{3} / G T^{2}$ A0 (allow working to be given in terms of acceleration)
(ii) $\begin{array}{rlrl}M & =\left\{4 \pi^{2} \times\left(1.5 \times 10^{11}\right)^{3}\right\} /\left\{6.67 \times 10^{-11} \times\left(3.16 \times 10^{7}\right)^{2}\right\} & \mathrm{C} 1 \\ & =2.0 \times 10^{30} \mathrm{~kg} & \mathrm{~A} 1\end{array}$

$$
=2.0 \times 10^{30} \mathrm{~kg}
$$

2 (a) obeys the equation $p V=$ constant $\times T$ or $p V=n R T$
(b) (i) $3.4 \times 10^{5} \times 2.5 \times 10^{3} \times 10^{-6}=n \times 8.31 \times 300 \quad$ M1
$n=0.34 \mathrm{~mol}$ A0
(ii) for total mass/amount of gas

$$
\begin{equation*}
3.9 \times 10^{5} \times(2.5+1.6) \times 10^{3} \times 10^{-6}=(0.34+0.20) \times 8.31 \times T \tag{C1}
\end{equation*}
$$

$T=360 \mathrm{~K}$
(c) when tap opened gas passed (from cylinder B) to cylinder A B1 work done on gas in cylinder A (and no heating)

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	41

3 (a) (i)

1. amplitude $=1.7 \mathrm{~cm}$

A1 [1]

$$
\text { 2. } \begin{aligned}
\text { period } & =0.36 \mathrm{~cm} \\
\text { frequency } & =1 / 0.36 \\
& =2.8 \mathrm{~Hz}
\end{aligned}
$$

C1
A1
(ii) $a=(-) \omega^{2} x$ and $\omega=2 \pi / T \quad$ C1
acceleration $=(2 \pi / 0.36)^{2} \times 1.7 \times 10^{-2}$
M1
$=5.2 \mathrm{~m} \mathrm{~s}^{-2}$
A0
(b) graph: straight line, through origin, with negative gradient

M1
from $\left(-1.7 \times 10^{-2}, 5.2\right)$ to $\left(1.7 \times 10^{-2},-5.2\right)$
A1
(if scale not reasonable, do not allow second mark)
(c) either kinetic energy $=1 / 2 m \omega^{2}\left(x_{0}{ }^{2}-x^{2}\right)$
or potential energy $=1 / 2 m \omega^{2} x^{2}$ and potential energy $=$ kinetic energy
B1
$1 / 2 m \omega^{2}\left(x_{0}-x^{2}\right)=1 / 2 \times 1 / 2 m \omega^{2} x_{0}{ }^{2}$ or $1 / 2 m \omega^{2} x^{2}=1 / 2 \times 1 / 2 m \omega^{2} x_{0}{ }^{2}$
$x_{0}{ }^{2}=2 x^{2}$
$x=x_{0} / \sqrt{ } 2=1.7 / \sqrt{ } 2$
$=1.2 \mathrm{~cm}$
A1
[3]

4 (a) work done moving unit positive charge M1 from infinity (to the point)
(b) (gain in) kinetic energy = change in potential energy

B1
$1 / 2 m v^{2}=q V$ leading to $v=(2 V q / m)^{1 / 2}$
B1
(c) either $\left(2.5 \times 10^{5}\right)^{2}=2 \times V \times 9.58 \times 10^{7}$

C1
$V=330 \mathrm{~V} \quad \mathrm{M} 1$
this is less than 470 V and so 'no'
A1
or
$v=\left(2 \times 470 \times 9.58 \times 10^{7}\right)$
$v=3.0 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
this is greater than $2.5 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ and so ' $n o$ '
or

$$
\begin{equation*}
\left(2.5 \times 10^{5}\right)^{2}=2 \times 470 \times(\mathrm{q} / \mathrm{m}) \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
(q / m)=6.6 \times 10^{7} \mathrm{Ckg}^{-1} \tag{C1}
\end{equation*}
$$

this is less than $9.58 \times 10^{7} \mathrm{Ckg}^{-1}$ and so 'no'

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	41

5 (a) (uniform magnetic) flux normal to long (straight) wire carrying a current of $1 \mathrm{~A} \quad \begin{aligned} & \text { M1 } \\ & \text { (creates) force per unit length of } 1 \mathrm{Nm}^{-1}\end{aligned}$
(b) (i) flux density $=4 \pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$

$$
\begin{equation*}
=6.6 \times 10^{-3} \mathrm{~T} \tag{2}
\end{equation*}
$$

A1
(ii) flux linkage $\begin{array}{rlrl} & =6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160 & & \mathrm{C} 1 \\ & =3.0 \times 10^{-3} \mathrm{~Wb} & \mathrm{~A} 1\end{array}$

$$
=3.0 \times 10^{-3} \mathrm{~Wb}
$$

(c) (i) (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)
(ii) e.m.f. $=\left(2 \times 3.0 \times 10^{-3}\right) / 0.80$

$$
=7.4 \times 10^{-3} \mathrm{~V}
$$

6 (a) (i) to reduce power loss in the core due to eddy currents/induced currents B1
(ii) either no power loss in transformer or input power = output power

$$
\text { (b) either } \begin{align*}
\text { r.m.s. voltage across load } & =9.0 \times(8100 / 300) \\
& \text { peak voltage across load } \\
& =\sqrt{ } 2 \times 243 \tag{2}\\
& =340 \mathrm{~V} \tag{C1}\\
\text { or } \quad \text { peak voltage across primary coil } & =9.0 \times \sqrt{ } 2 \tag{A1}\\
& \text { peak voltage across load }
\end{align*}
$$ C1

7 (a) (i) lowest frequency of e.m. radiation \quad M1 giving rise to emission of electrons (from the surface)

A1
(ii) $\begin{aligned} & E=h f \\ & \text { threshold frequency }=\left(9.0 \times 10^{-19}\right) /\left(6.63 \times 10^{-34}\right) \\ &=1.4 \times 10^{15} \mathrm{~Hz}\end{aligned}$ C1

$$
\begin{aligned}
\text { nreshold frequency } & =\left(9.0 \times 10^{-19}\right) / \\
& =1.4 \times 10^{15} \mathrm{~Hz}
\end{aligned}
$$

(b) either $300 \mathrm{~nm} \equiv 10 \times 10^{15} \mathrm{~Hz}$ (and $600 \mathrm{~nm} \equiv 5.0 \times 10^{14} \mathrm{~Hz}$)
or $\quad 300 \mathrm{~nm} \equiv 6.6 \times 10^{-19} \mathrm{~J}$ (and $600 \mathrm{~nm} \equiv 3.3 \times 10^{-19} \mathrm{~J}$)
or zinc $\lambda_{0}=340 \mathrm{~nm}$, platinum $\lambda_{0}=220 \mathrm{~nm}$ (and sodium $\lambda_{0}=520 \mathrm{~nm}$) M1
emission from sodium and zinc
$\begin{array}{lc}\text { (c) each photon has larger energy } & \text { M1 } \\ \text { fewer photons per unit time } & \text { M1 }\end{array}$
fewer electrons emitted per unit time A1

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	41

8 (a) two (light) nuclei combine M1 to form a more massive nucleus A1
(b) (i) $\Delta m \quad=(2.01410 u+1.00728 u)-3.01605 u$

$$
=5.33 \times 10^{-3} u
$$

C1
energy $=c^{2} \times \Delta m$ C1

$$
\begin{aligned}
& =5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times\left(3.00 \times 10^{8}\right)^{2} \\
& =8.0 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

A1
$\begin{array}{ll}\text { (ii) speed/kinetic energy of proton and deuterium must be very large } & \text { B1 } \\ \text { so that the nuclei can overcome electrostatic repulsion } & \text { B1 }\end{array}$

Section B

9 (a) (i) light-dependent resistor/LDR
(ii) strain gauge

B1
(iii) quartz/piezo-electric crystal

B1
(b) (i) resistance of thermistor decreases as temperature increses
etiher $\quad V_{\text {out }}=V \times R /\left(R+R_{\mathrm{T}}\right)$
or current increases and $V_{\text {OUT }}=I R$
$V_{\text {OUt }}$ increases A1
(ii) either change in R_{T} with temperature is non-linear
or $\quad V_{\text {OUT }}$ is not proportional to $R_{\mathrm{T}} /$ change in $V_{\text {OUT }}$ with R_{T} is non-linear M1
so change is non-linear

10 (a) sharpness: how well the edges (of structures) are defined
(b) e.g. scattering of photos in tissue/no use of a collimator/no use of lead grid large penumbra on shadow/large area anode/wide beam large pixel size
(any two sensible suggestions, 1 each)
(c) (i) $I=I_{0} \mathrm{e}^{-\mu x}$
ratio $=\exp (-2.85 \times 3.5) / \exp (-0.95 \times 8.0)$
C1

$$
\begin{aligned}
& =\left(4.65 \times 10^{-5}\right) /\left(5.00 \times 10^{-4}\right) \\
& =0.093
\end{aligned}
$$

A1
(ii) either large difference (in intensities)
or ratio much less than 1.0
M1
so good contrast A1
(answer given in (c)(ii) must be consistent with ratio given in (c)(i))

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	41

11 (a) (i) amplitude of the carrier wave varies M1
(in synchrony) with the displacement of the information signal
(ii) e.g. more than one radio station can operate in same region/less interference enables shorter aerial
increased range/less power required/less attenuation less distortion
(any two sensible answers, 1 each)
(b) (i) frequency $=909 \mathrm{kHz} \quad$ C1

$$
\begin{equation*}
=330 \mathrm{~m} \tag{2}
\end{equation*}
$$

A1
(ii) bandwidth $=18 \mathrm{kHz}$
(iii) frequency $=9000 \mathrm{~Hz}$

12 (a) for received signal, $28=10 \lg \left(P /\left\{0.36 \times 10^{-6}\right\}\right)$
(b) loss in fibre $=10 \lg \left(\left\{9.8 \times 10^{-3}\right\} /\left\{2.27 \times 10^{-4}\right\}\right)$

$$
=16 \mathrm{~dB}
$$

(c) attenuation per unit length $=16 / 85$

$$
=0.19 \mathrm{~dB} \mathrm{~km}^{-1}
$$

