MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/42
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	42

Section A

1 (a) equatorial orbit / above equator
B1
satellite moves from west to east / same direction as Earth spins B1
period is 24 hours / same period as spinning of Earth
B1
(allow 1 mark for 'appears to be stationary/overhead' if none of above marks scored)
(b) gravitational force provides/is the centripetal force
$G M m / R^{2}=m R \omega^{2}$ or $G M m / R^{2}=m v^{2} / R$
$\omega=2 \pi / T$ or $v=2 \pi R / T$ or clear substitution M1
clear working to give $R^{3}=\left(G M T^{2} / 4 \pi^{2}\right)$
(c) $R^{3}=6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times(24 \times 3600)^{2} / 4 \pi^{2}$
$=7.57 \times 10^{22}$ C1
$R=4.2 \times 10^{7} \mathrm{~m}$ A1
(missing out 3600 gives $1.8 \times 10^{5} \mathrm{~m}$ and scores $2 / 3$ marks)

2 (a) (i) 1. $p V=n R T$
$1.80 \times 10^{-3} \times 2.60 \times 105=n \times 8.31 \times 297 \quad \mathrm{C} 1$
$n=0.19 \mathrm{~mol}$ A1
2. $\Delta q=m c \Delta T$
$95.0=0.190 \times 12.5 \times \Delta T$
B1
$\Delta T=40 \mathrm{~K}$
A1
(allow 2 marks for correct answer with clear logic shown)
(ii) $p / T=$ constant
$\left(2.6 \times 10^{5}\right) / 297=p /(297+40) \quad$ M1
$p=2.95 \times 10^{5} \mathrm{~Pa}$ A0
(b) change in internal energy is $120 \mathrm{~J} / 25 \mathrm{~J} \quad \mathrm{~B} 1$
internal energy decreases / $\underline{\Delta} U$ is negative / kinetic energy of molecules decreases M so temperature lower

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	42

3 (a) (i) $\omega=2 \pi / T$

$$
\begin{aligned}
& =2 \pi / 0.69 \\
& =9.1 \mathrm{rad} \mathrm{~s}^{-1} \\
\text { (allow use of } f=1.5 \mathrm{~Hz} \text { to give } \omega=9.4 \mathrm{rad} \mathrm{~s}^{-1} \text {) } & \text { C1 }
\end{aligned}
$$

(ii) 1. $x=2.1 \cos 9.1 t$
2.1 and 9.1 numerical values

B1 use of cos

B1
2. $v_{0}=2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_{0} from (ii)1.)
$=0.19 \mathrm{~m} \mathrm{~s}^{-1}$
$v=v_{0} \sin 9.1 t$ (allow $\cos 9.1 t$ if \sin used in (ii)1.)

B1
(b) energy $=$ either $1 / 2 m v_{0}{ }^{2}$ or $1 / 2 m \omega^{2} x_{0}{ }^{2}$

$$
\begin{align*}
& =\text { either } 1 / 2 \times 0.078 \times 0.19^{2} \text { or } 1 / 2 \times 0.078 \times 9.1^{2} \times\left(2.1 \times 10^{-2}\right)^{2} \\
& =1.4 \times 10^{-3} \mathrm{~J} \tag{A1}
\end{align*}
$$

4 (a) (i) $V=q / 4 \pi \varepsilon_{0} R$ B1
(ii) (capacitance is) ratio of charge and potential or q / V M1

$$
C=q / V=4 \pi \varepsilon_{0} R
$$

(b) (i) $C=4 \pi \times 8.85 \times 10^{-12} \times 0.45$

$$
=50 \mathrm{pF} \quad \mathrm{~A} 1
$$

(ii) either energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $Q=C V \quad C 1$
energy of spark $=1 / 2 \times 50 \times 10^{-12}\left\{\left(9.0 \times 10^{5}\right)^{2}-\left(3.6 \times 10^{5}\right)^{2}\right\}$

$$
=17 \mathrm{~J}
$$

A1

5 (a) (uniform magnetic) flux normal to long (straight) wire carrying a current of $1 \mathrm{~A} \quad \mathrm{M}$ (creates) force per unit length of $1 \mathrm{~N} \mathrm{~m}^{-1}$
(b) (i) sketch: concentric circles
increasing separation (must show more than 3 circles)
(ii) $\begin{array}{rlr}\mathrm{B} & =\left(4 \pi \times 10^{-7} \times 6.3\right) /\left(2 \pi \times 4.5 \times 10^{-2}\right) & \mathrm{C} 1 \\ & =28 \times 10^{-5} \mathrm{~T}\end{array}$

$$
=2.8 \times 10^{-5} \mathrm{~T}
$$

A1
(iii) $\begin{array}{rlr}F & =B I L(\sin \theta) & C 1 \\ & =2.8 \times 10^{-5} \times 9.3 \times 1 & A 1\end{array}$
$F / L=2.6 \times 10^{-4} \mathrm{Nm}^{-1}$
(c) force per unit length depends on product $I_{X} I_{Y} /$ by Newton's third law / action and reaction are equal and opposite

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9702	42

6 (a) (induced) e.m.f. proportional to rate
(b) (i) positive terminal identified (upper connection to load)
(ii) $V_{P}=\sqrt{ } 2 \times V_{\text {RMS }} \quad \mathrm{C} 1$
ratio $=240 \sqrt{ } 2 / 9$
$=38$
C1
$\left(V_{P}=V_{\text {RMS }} / \sqrt{2}\right.$ gives ratio $=18.9$ and scores $\left.1 / 3\right)$
(ratio $=240 / 9=26.7$ scores 1/3)
(ratio $=9 /(240 / \sqrt{ } 2)=0.0265$ is inverted ratio and scores $1 / 3$)
(c) (i) e.g. (output) p.d. / voltage / current does not fall to zero
e.g. range of (output) p.d. / voltage / current is reduced (any sensible answer)
(ii) sketch: same peak value at start of discharge
correct shape between one peak and the next

7 (a) each wavelength is associated with a discrete change in energy discrete energy change / difference implies discrete levels
(b) (i) 1. arrow from -0.54 eV to -0.85 eV , labelled L
2. arrow from -0.54 eV to -3.4 eV , labelled S
(two correct arrows, but only one label - allow 2 marks)
(two correct arrows, but no labels - allow 1 mark)
(ii) $E=h c / \lambda$

C1
$(3.4-0.54) \times 1.6 \times 10^{-19}=\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) / \lambda \quad$ C1
$\lambda=4.35 \times 10^{-7} \mathrm{~m}$
(c) $-1.50 \rightarrow-3.4=1.9 \mathrm{eV}$
$-0.85 \rightarrow-3.4=2.55 \mathrm{eV}$ (allow 2.6 eV)
$-0.54 \rightarrow-3.4=2.86 \mathrm{eV}$ (allow 2.9 eV)
3 correct, 2 marks with -1 mark for each additional energy
2 correct, 1 mark but no marks if any additional energy differences

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9702	42

8 (a) energy is given out / released on formation of the α-particle (or reverse argument) M1 either $E=m c^{2}$ so mass is less
or reference to mass-energy equivalence A1
[2]
(b) (i) mass change $=18.00567 \mathrm{u}-18.00641 \mathrm{u}$ C1

$$
=7.4 \times 10^{-4} \mathrm{u}(\text { sign not required) }
$$

A1
(ii) energy $=c^{2} \Delta m$

$$
\begin{align*}
& =\left(3.0 \times 10^{8}\right)^{2} \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27} \\
& =1.1 \times 10^{-13} \mathrm{~J} \tag{A1}
\end{align*}
$$

C1
(allow use of $u=1.67 \times 10^{-27} \mathrm{~kg}$)
(allow method based on 1 u equivalent to 930 MeV to 933 MeV)
(iii) either mass of products greater than mass of reactants
this mass/energy provided as kinetic energy of the helium-4 nucleus

or both nuclei positively charged

energy required to overcome electrostatic repulsion

Page 6	Mark Scheme	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2013	9702	42

Section B

9 (a) 30 litres $\rightarrow 54$ litres (allow ± 4 litres on both limits)
(b) (i) only 0.1 V change in reading for 10 litre consumption (or similar numbers) $\begin{aligned} & \text { B1 } \\ & \text { above about } 60 \text { litres gradient is small compared to the gradient at about } 40 \text { litres }\end{aligned}$
(ii) voltmeter reading (nearly) zero when fuel is left $\quad \mathrm{C} 1$
voltmeter reads only about 0.1 V when 10 litres of fuel left in tank A1 ("voltmeter reads zero when about 4 litres of fuel left in tank" scores 2 marks)

10 (a) product of density and speed of sound / wave M1 A1
(b) if $\left(Z_{1}-Z_{2}\right)$ is small, mostly transmission M1 if $\left(Z_{1}-Z_{2}\right)$ is large, mostly reflection M1
(if 'mostly' not stated allow 1/2 marks for these first two marks)
either reflection / transmission also depends on $\left(Z_{1}+Z_{2}\right)$
or intensity reflection coefficient $=\left(Z_{1}-Z_{2}\right)^{2} /\left(Z_{1}+Z_{2}\right)^{2}$
A1

> (density of medium and) speed of sound / wave in medium
$\begin{array}{ll}\text { (c) e.g. smaller structures can be distinguished } & \text { B1 } \\ \text { because better resolution at shorter wavelength / higher frequency } & \text { B1 }\end{array}$

11 (a) changing voltage changes energy / speed of electrons \quad M1 \quad A1
1 (a) changing voltage changes energy / speed of electrons \quad M1
1 (a) changing voltage changes energy / speed of electrons \quad M1
1 (a) changing voltage changes energy / speed of electrons \quad M1
(b) (i) 1. loss of power / energy / intensity
2. intensity changes when beam not parallel $\begin{aligned} & \text { C1 } \\ & \text { decreases when beam is divergent }\end{aligned}$ decreases when beam is divergent A1
(ii) $\begin{aligned} \text { ratio } & =(\exp \{-2.9 \times 2.5\}) /(\exp \{-0.95 \times 6.0\}) & \mathrm{C} 1 \\ & =0.21(\text { min. } 2 \text { sig. fig. }) & \mathrm{A} 1\end{aligned}$
(ii) $\begin{aligned} \text { ratio } & =(\exp \{-2.9 \times 2.5\}) /(\exp \{-0.95 \times 6.0\}) & \mathrm{C} 1 \\ & =0.21(\min .2 \text { sig. fig. }) & \mathrm{A} 1\end{aligned}$

$$
\begin{equation*}
=0.21 \text { (min. } 2 \text { sig. fig. }) \tag{2}
\end{equation*}
$$

(ii) $\begin{aligned} \text { ratio } & =(\exp \{-2.9 \times 2.5\}) /(\exp \{-0.95 \times 6.0\}) & \mathrm{C} 1 \\ & =0.21(\min .2 \text { sig. fig. }) & \mathrm{A} 1\end{aligned}$
(values of both lengths incorrect by factor of 10^{-2} to give ratio of 0.985 scores 1 mark)

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9702	42

12 (a) takes all the simultaneous digits for one number B1 and 'sends' them one after another (along the transmission line)

B1
(b) (i) 0111

A1
(ii) 0110

A1
(c) levels shown

t	0	0.2	0.4	0.6	0.8	1.0	1.2
	0	8	7	15	6	5	8

(-1 for each error or omission) A2
correct basic shape of graph i.e. series of steps M1
with levels staying constant during correct time intervals A1
(vertical lines in steps do not need to be shown)
(d) increasing number of bits reduces step height M1
increasing sampling frequency reduces step depth / width M1 reproduction of signal is more exact A1

