CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	21

1 (a) (i) either rate of change of displacement or (change in) displacement/time (taken) B1
(ii) speed has magnitude only B velocity has magnitude and direction B1
(b) (i) idea of area under graph/use of $s=\frac{(u+v)}{2} \times t$ C1

$$
\begin{align*}
s & =\frac{(18+32)}{2} \times 2.5 \tag{C1}\\
& =62.5 \mathrm{~m}
\end{align*}
$$ A1

(ii) $\begin{array}{ll}a=(18-32) / 2.5(=-5.6) & \mathrm{C} 1 \\ F=m a & \mathrm{C} 1\end{array}$
$F=m a$
C1
$F=1500 \times(-) 5.6=(-) 8400 \mathrm{~N}$
(c) arrow labelled A and arrow labelled F both to the left

2 (a) (i) work (done)/time (taken)
(ii) work $=$ force \times displacement (in direction of force) B1
power $=$ force \times displacement/time (taken) $=$ force \times velocity
B1
(b) (i) weight $=m g$ C1

$$
P=F v=2500 \times 9.81 \times \sin 9^{\circ} \times 8.5\left(\text { or use } \cos 81^{\circ}\right)
$$

C1
$=33$ (32.6) kW
A1
(ii) no gain or loss of KE B1
no work (done) against air resistance

3 (a) (i) resultant force is zero
weight of plank + weight of man $=F_{A}+F_{B}$
or $200(\mathrm{~N})+880(\mathrm{~N})$ or $1080=F_{\mathrm{A}}+F_{\mathrm{B}}$
(ii) principle of moments used C 1
(anticlockwise moments) $F_{\mathrm{B}} \times 5.0$ C1
(clockwise moments) $880 \times 0.5+200 \times 2.5$ C1
$F_{\mathrm{B}}=(440+500) / 5.0=188 \mathrm{~N}$ A1

finish point $(5,980)$ A1

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	21

4 (a) kinetic energy $=1 / 2 m v^{2}$
C1

$$
=1 / 2 \times 0.040 \times(2.8)^{2}=0.157 \mathrm{~J} \text { or } 0.16 \mathrm{~J}
$$

A1

$$
\text { (b) (i) } \begin{aligned}
k & =F / x \text { or } F=k x \\
X_{\mathrm{B}} & =14 / 800 \\
& =0.0175 \mathrm{~m}
\end{aligned}
$$

C1 A1
(ii) area under graph = elastic potential energy stored C1 or $1 / 2 k x^{2}$ or $1 / 2 F x$ (energy stored $=$) 0.1225 J less than KE (of 0.16 J) A1

5 (a) (i) displacement is the distance from the equilibrium position/undisturbed position/midpoint/rest position B1
amplitude is the maximum displacement B1
(ii) frequency is the number of wavefronts/crests passing a point per unit time/number of oscillations per unit time B1
time period is the time between adjacent wavefronts or time for one oscillation B1
(b) (i) 1. amplitude $=1.5 \mathrm{~mm} \quad \mathrm{~A} 1$
2. wavelength $=25 / 6$

C1

$$
=4.2 \mathrm{~cm} \text { or } 4.2 \times 10^{-2} \mathrm{~m} \quad \mathrm{~A} 1
$$

(ii) $\begin{array}{ll}v=\lambda / T \text { or } v=f \lambda \text { and } T=1 / f & \text { C1 } \\ T=4.2 / 7.5=0.56 \\ s & \end{array} \quad$ A1
(c) (i) progressive M0
wavefront/crests moving/energy is transferred by the waves
A1
(ii) transverse M0
the vibration is perpendicular to the direction of energy transfer/wave velocity or travel of the wave/wavefronts

A1

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	21

(iii) $\begin{array}{rlr}I & =E /\left(R_{T}+r\right) & \mathrm{C} 1\end{array}$

$$
\begin{align*}
& =12 / 2.0 \\
& =6.0 \mathrm{~A} \tag{2}
\end{align*}
$$

(iv) power of each lamp $=I^{2} R$

$$
\begin{array}{ll}
=(3.0)^{2} \times 3.0 & \text { C1 } \\
=27 \mathrm{~W} & \text { A1 }
\end{array}
$$

(c) less resistance (in circuit)/more current M1 more lost volts/less p.d. across battery A1

7 (a) α : helium nucleus
β : electron
γ : electromagnetic radiation/wave/ray or photon
three correct $2 / 2$, two correct $1 / 2$ B2
(b) (i) atomic number/proton number/Z-2, nucleon/mass number/ $A-4$
(ii) atomic number/proton number/Z +1 nucleon/mass number/ A no change
(iii) no change in proton or mass number or "no change"

B1

