CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	,			GCE AS/A LEVEL – May/June 2014	9702	22	
1	(a)	power = energy/time or work done/time force: $kg m s^{-2}$ (including from mg in mgh or Fv)			B1		
		or k	inetio	c energy $(\frac{1}{2} m v^2)$: kg $(m s^{-1})^2$		B1	
				e: m and (time) $^{-1}$: s $^{-1}$) and hence power: kg m s $^{-2}$ m s $^{-1}$	$= kg m^2 s^{-3}$	B1	[3]
	(b)	A: n	n² an ect s	$m^2 s^{-3}$ and T : K substitution into $C = (Qx)/tAT$ or equivalent, or with car C : $kg m s^{-3} K^{-1}$	ncellation	C1 C1 C1 A1	[4]
2	(a)		m/\			C1	
		ρ=	(9.6	$f^{2}/4$) × t = 7.67 × 10 ⁻⁷ m ³ × 10 ⁻³)/[π (22.1/2 × 10 ⁻³) ² × 2.00 × 10 ⁻³] I3 kg m ⁻³ (allow 2 or more s.f.)		C1 A1	[3]
	(b)	(i)	$\Delta \rho I$	$\rho = \Delta m/m + \Delta t/t + 2\Delta d/d$		C1	
				= 5.21% + 0.50% + 0.905% [or correct fractional un	ncertainties]	C1	
				= 6.6% (6.61%)		A1	[3]
		(ii)	ρ=	$12500\pm800\mathrm{kg}\mathrm{m}^{-3}$		A1	[1]
3	(a)			mass/object continues (at rest or) at constant/unifon by a resultant force	orm velocity unle	ess B1	[1]
	(b)	(i)		ght <u>vertically</u> down mal/reaction/contact (force) perpendicular/normal <u>to t</u>	he slope	B1 B1	[2]
		(ii)	1.	acceleration = gradient or $(v - u)/t$ or $\Delta v/t$ = $(6.0 - 0.8)/(2.0 - 0.0) = 2.6 \text{ m s}^{-2}$		C1 M1	[2]
			2.	F = ma = 65 × 2.6 = 169 N (allow to 2 or 3 s.f.)		A1	[1]
			3.	weight component seen: $mg \sin \theta$ (218 N) 218 – R = 169 R = 49 N (require 2 s.f.)		C1 C1 A1	[3]

Mark Scheme

Syllabus

Paper

Page 2

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2014	9702	22	
4	(a)			nergy of a <u>mass</u> due to its position in a <u>gravitational field</u> ergy (a mass has) due to its motion/speed/velocity	<u>1</u>	B1 B1	[2]
	(b)	(i)	1.	$KE = \frac{1}{2} mv^2$		C1	
				$=\frac{1}{2}\times0.4\times(30)^2$		C1	
				= 180 J		A1	[3]
			2.	$s = 0 + \frac{1}{2} \times 9.81 \times (2.16)^2$ or $s = (30 \sin 45^\circ)^2/(2$	× 9.81)	C1	
				= $22.88 (22.9) \text{m}$ = $22.94 (22.9) \text{m}$		A1	[2]
			3.	GPE = mgh = $0.4 \times 9.81 \times 22.88 = 89.8 (90) J$		C1 A1	[2]
		(ii)	1.	KE = initial KE – GPE = 180 – 90 = 90 J		A1	[1]
			2.	(horizontal) velocity is not zero/(object) is still moving in terms of conservation of energy	/answer explained	B1	[1]
5	(a)	(Yo	ung	modulus/E =) stress/strain		B1	[1]
	(b)	(i)	(i) stress = F/A				
				$= F/(\pi d^2/4)$		1.44	
			or	$= F/(\pi d^2)$		M1	
			rati	o = 4 (or 4:1)		A1	[2]
		(ii)		s the same for both wires (as same material) [e.g. $E_P = L$ ain = stress/ E	Ξ _Q]	M1	
			rati	o = 4 (or 4:1) [must be same as (i)]		A1	[2]
6	(a)			re no lost volts/energy lost in the battery are no lost volts/energy lost in the internal resistance		B1	[1]
	(b)		the current/ I decreases (as R increases) p.d. decreases (as R increases)				
		or					
				allel resistance (of X and <i>R</i>) increases oss parallel resistors increases, so p.d. (across Y) decre	eases	M1 A1	[2]

Page 4			Mark Scheme	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2014	9702	22		
(c) (i)		ent = 2.4 (A) across AB = 24 – 2.4 × 6 = 9.6 V		C1 M1		
		or					
			resistance = 10Ω (= $24V/2.4A$) allel resistance = 4Ω), p.d. = $24 \times (4/10) = 9.6 V$		C1 M1	[2]	
	(ii)	•	B) = $9.6/2.4 = 4.0\Omega$ + $1/X = 1/4$ [must correctly substitute for R] 12Ω		C1 C1 A1		
		or					
		$I_{\times} =$	9.6/6.0 = 1.6 (A) 2.4 - 1.6 = 0.8 (A) 9.6/0.8) = 12 Ω		(C1) (C1) (A1)	[3]	
	(iii)	powe	er = VI or EI or V^2/R or E^2/R or I^2R		C1		
			= $24 \times 2.4 \text{ or } (24)^2 / 10 \text{ or } (2.4)^2 \times 10$ = 57.6 W (allow 2 or more s.f.)		A1	[2]	
(d) pov	wer de	ecreases		МО		
			nstant or power = $24 \times$ current, and current decreases constant or power = 24^2 /resistance, and resistance in		A1	[1]	
' (a) <u>wa</u>	<u>ves</u> fro	om the double slit are coherent/constant phase differe	nce	B1		
	<u>wa</u>	waves (from each slit) overlap/superpose/meet (not interfere)					
		maximum/bright fringe where path difference is $n\lambda$ or phase difference is $n360^{\circ}/2\pi n$ rad					
	or	or minimum/dark fringe where path difference is $(n + \frac{1}{2})\lambda$					
	or	phase	difference is $(2n + 1) 180^{\circ}/(2n + 1)\pi$ rad		B1	[3]	
(b	ν = λ =		10^8) / 670×10^{12} = 448 (or 450) (nm)		C1 M1	[2]	
(c		= 12 / ! = Dλ/	9 w) = $(2.8 \times 450 \times 10^{-9}) / (12 / 9 \times 10^{-3})$ [allow nm, m = 9.5×10^{-4} m [9.4×10^{-4} m using λ = 448 nm]	ım]	C1 C1 A1	[3]	
(d		_	has) larger/higher/longer wavelength (must be comp orther apart/larger separation	arison)	M1 A1	[2]	

7