CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/23
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	23

1 (a) current, mass and temperature two correct $2 / 2$, one omission or error $1 / 2$

A2
(b) $\sigma:$ no units, $V: \mathrm{m}^{3}$
$E_{P}: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ C1
C: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \times \mathrm{m}^{-3}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$ A1

2 (a) scalar has magnitude only vector has magnitude and direction
(b) (i) $v^{2}=0+2 \times 9.81 \times 25$ (or using $\left.\frac{1}{2} m v^{2}=m g h\right)$ $v=22(.1) \mathrm{m} \mathrm{s}^{-1}$
(ii) $22.1=0+9.81 \times t$ (or $\left.25=\frac{1}{2} \times 9.81 \times t^{2}\right)$ M1
$t(=22.1 / 9.81)=2.26 \mathrm{~s}$ or $t\left[=(5.097)^{1 / 2}\right]=2.26 \mathrm{~s}$ A0
(iii) horizontal distance $=15 \times t$

$$
=15 \times 2.257=33.86(\text { allow } 15 \times 2.3=34.5)
$$

$(\text { displacement })^{2}=(\text { horizontal distance })^{2}+(\text { vertical distance })^{2}$

$$
=(25)^{2}+(33.86)^{2}
$$

displacement $=42(42.08) \mathrm{m}$ (allow $43(42.6) \mathrm{m}$, allow 2 or more s.f.)
(iv) distance is the actual (curved) path followed by ball B1
displacement is the straight line/minimum distance P to Q B1

3 (a) work done is the product of force and the distance moved in the direction of the force or product of force and displacement in the direction of the force

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	23

(b) (i) work done equals the decrease in GPE - gain in KE
(ii) 1. distance $=$ area under line

$$
=(7.4 \times 2.5) / 2=9.3 \mathrm{~m}(9.25 \mathrm{~m})
$$

or
acceleration from graph $a=7.4 / 2.5$ ($=2.96$)
and equation of motion $(7.4)^{2}=2 \times 2.96 \times s$ gives $s=9.3(9.25) \mathrm{m}$
2. kinetic energy $=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 75 \times(7.4)^{2} \\
& =2100 \mathrm{~J}
\end{aligned}
$$

3. potential energy $=m g h$

$$
h=9.3 \sin 30^{\circ}
$$

$P E=75 \times 9.81 \times 9.3 \sin 30^{\circ}=3400 \mathrm{~J}$ A1
4. work done = energy loss C1
$R=(3421-2054) / 9.3$
C1

$$
=150(147) \mathrm{N}
$$

repeat for larger masses and note maximum mass for which, when load is removed, the spring does return to original length
(b) Hooke's law requires force proportional to extension B1 graph shows a straight line, hence obeys Hooke's law M1
(c) $k=$ force/extension
$=(0.42 \times 9.81) /\left[(30-21.2) \times 10^{-2}\right]$

$$
=47(46.8) \mathrm{Nm}^{-1}
$$ C1 C1

A1

5 (a) lost volts/energy used within the cell/internal resistance when cell supplies a current

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	23

(b) (i) $\begin{array}{ll}E=I(R+r) & \mathrm{C} 1\end{array}$

$$
\begin{align*}
& 4.5=0.65(6.0+r) \\
& r=0.92 \Omega
\end{align*}
$$

(ii) $I=0.65(\mathrm{~A})$ and $V=I R \quad$ C1
$V=0.65 \times 6=3.9 \mathrm{~V}$
A1
(iii) $P=V^{2} / R$ or $P=I^{2} R$ and $P=I V$

C1
$=(3.9)^{2} / 6=2.5 \mathrm{~W}$
A1
(iv) $\begin{aligned} \text { efficiency } & =\text { power out/power in } & & \text { C1 } \\ & =I^{2} R / I^{2}(R+r)=R /(R+r)=6.0 /(6.0+0.92)=0.87 & & \text { A1 }\end{aligned}$
(c) $\left.\begin{array}{lr}\text { (circuit) resistance decreases } & \text { B1 } \\ \text { current increases } & \text { M1 }\end{array}\right)=$ A1
more heating effect A1

6 (a) (i) progressive wave transfers energy, stationary wave no transfer of energy/ keeps energy within wave
(ii) (progressive) wave/wave from loudspeaker reflects at end of tube B1
reflected wave overlaps (another) progressive wave
B1 same frequency and speed hence stationary wave formed B1
(iii) (side to side) along length of tube/along axis of tube

B1 B1
(b) all three nodes clearly marked with N /clearly labelled at cross-over points
(c) phase difference $=0$
(d) (i) $v=f \lambda$

C1
$\lambda=330 / 440=0.75 \mathrm{~m}$ A1
(ii) $L=5 / 4 \lambda$

C1
$=5 / 4 \times 0.75=0.94 \mathrm{~m}$ A1

