CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9702	42

Section A

1 (a) gravitational force provides/is the centripetal force **B**1 $GMm/r^2 = mv^2/r$ M1 $v = \sqrt{(GM/r)}$ Α0 [2] allow gravitational field strength provides/is the centripetal acceleration (B1) $GM/r^2 = v^2/r$ (M1)(b) (i) kinetic energy increase/change = loss/change in (gravitational) potential В1 $\frac{1}{2}mV_0^2 = GMm/x$ C1 $V_0^2 = 2GM/x$ $V_0 = \sqrt{(2GM/x)}$ **A1** [3] (max. 2 for use of r not x) M1 (ii) V_0 is (always) greater than v (for x = r) so stone could not enter into orbit **A1** [2] (expressions in (a) and (b)(i) must be dimensionally correct) 2 (a) use of kelvin temperatures **B1** [2] both values of (V/T) correct (11.87), V/T is constant so pressure is constant M1 (allow use of n = 1. Do not allow other values of n.) **(b) (i)** work done = $p\Delta V$ $=4.2\times10^5\times(3.87-3.49)\times10^3\times10^{-6}$ C1 = 160 J**A1** [2] (do not allow use of V instead of ΔV) (ii) increase/change in internal energy = heating of system C1 + work done on system = 565 - 160= 405 J**A1** [2] (c) internal energy = sum of kinetic energy and potential energy $/E_K + E_P$ **B1** no intermolecular forces M1 no potential energy (so $\Delta U = \Delta E_{\rm K}$) **A1** [3] 3 (a) resonance B1 [1] C1 **(b)** $Pt = mc \Delta \theta$ $750 \times 2 \times 60 = 0.28 \times c \times (98 - 25)$ C1 $c = 4400 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ Α1 [3]

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – May/June 2014	9702	42	
	(c)	e.g. some microwave leakage from the cooker e.g. container for the water is also heated (any sensible suggestion)					[1]
4	(a)	(i)	=	= $Q_1Q_2/4\pi\varepsilon_0 r^2$ = $8.99 \times 10^9 \times (1.6 \times 10^{-19})^2/(2.0 \times 10^{-15})^2$ = 58 N		C1 A1	[2]
		(ii)		= Gm_1m_2/r^2 = $6.67 \times 10^{-11} \times (1.67 \times 10^{-27})^2/(2.0 \times 10^{-15})^2$		C1	
			=	$= 4.7 \times 10^{-35} \text{ N}$		A1	[2]
	(b)	(i)	mus	e of <u>repulsion</u> (much) greater than force of <u>attraction</u> t be some other force of <u>attraction</u> old nucleus together		B1 M1 A1	[3]
			(Do	not allow if $F_G > F_E$ in (a) or one of the forces not calcu	lated in (a))		
		(ii)	outs	ide nucleus there is repulsion between protons		B1	
		()	eithe			B1	[2]
5	(a)			we with decreasing gradient ble value near $x = 0$ and does not reach zero		M1 A1	[2]
				line less than 4.0 cm do not allow A1 mark) it if graph line has positive and negative values of $V_{\rm H}$)			
	(b)	all p	eaks	om 0 to 2 <i>T</i> , two cycles of a sinusoidal wave sabove 3.5 mV 4.95/5.0 mV (allow 4.8 mV to 5.2 mV)		M1 C1 A1	[3]
	(c)	e.m	.f. inc	duced in coil when magnetic field/flux is changing/cutt	ing	B1	
			no e.r at e	at each position, magnetic field does not vary m.f. is induced in the coil/no reading on the millivoltme each position, switch off current and take millivoltmeter each position, rapidly remove coil from field and take m	reading	В1	[2]
				• •	-		- -
6	(a)	eled	ctric a	and magnetic fields normal to each other		B1	
		either charged particle enters region normal to both fields or correct B direction w.r.t. E for zero deflection for no deflection, $v = E/B$			B1 B1	[3]	
		(no credit if magnetic field region clearly not overlapping with electric field region)					

L	r age +	Walk Scheine	Syllabus	i apei	
		GCE A LEVEL – May/June 2014	9702	42	
	=	= $(640 \times 10^{-3} \times 1.6 \times 10^{-19} \times 6.2 \times 10^{-2})/(9.6 \times 10^{4})$ = 6.61×10^{-26} kg			
		$= (6.61 \times 10^{-26})/(1.66 \times 10^{-27}) u$ = 40 u		A1	[4]
	•	$m \propto 1/r$ or m constant $and \ q \propto 1/r$ m for A is twice that for B in path A have (same mass but) twice the charge (of in	ons in path B)	B1 B1 B1	[3]
7		ubtended at the centre of a circle rc equal in length to the radius		B1 B1	[2]
		= distance × angle meter = $3.8 \times 10^5 \times 9.7 \times 10^{-6}$		C1	
		$=3.7\mathrm{km}$		A1	[2]
	` '	rs is (much) further from Earth/away (<i>answer must be d</i> lle (at telescope is much) smaller	comparative)	B1 B1	[2]
8	(a) photon	energy = hc/λ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(590 \times 10^{-9})$ = $3.37 \times 10^{-19} J$		C1 C1	
	number	= $(3.2 \times 10^{-3})/(3.37 \times 10^{-19})$ = 9.5×10^{15} (allow 9.4×10^{15})		A1	[3]
	(b) (i) p =	= h/λ		C1	
	=	= $(6.63 \times 10^{-34})/(590 \times 10^{-9})$ = $1.12 \times 10^{-27} \mathrm{kg}\mathrm{m}\mathrm{s}^{-1}$		C1	
	tota	al momentum = $9.5 \times 10^{15} \times 1.12 \times 10^{-27}$ = $1.06 \times 10^{-11} \text{kg m s}^{-1}$		A1	[3]
	(ii) forc	$ee = 1.06 \times 10^{-11} \text{N}$		A1	[1]
9	` '	number of atoms/nuclei/activity (of the isotope) duced to one half (of its initial value)		M1 A1	[2]
		$ \frac{2N}{100} = \frac{3}{100} \times \frac{100}{100} \times $		C1 C1 A1	[3]
		nber of water molecules in 1.0 kg = $(6.02 \times 10^{23})/(18 \times 10^{25})$ = 3.3×10^{25}	× 10 ⁻³)	C1	
	ratio	$0 = (3.3 \times 10^{25})/(4.6 \times 10^{8})$ $= 7.2 (7.3) \times 10^{16}$		A1	[2]

Mark Scheme

Syllabus

Paper

Page 4

	Page 5			Paper	,	
		GCE A LEVEL – May/June 2014 9702				
	170	$A_0 e^{-\lambda t} \frac{\text{and}}{2} \lambda t_{\frac{1}{2}} = \ln 2$ 0 = 460 exp (-{\ln 2 t}/8.1) 11.6 days (allow 2 s.f.)		C1 C1 A1	[3]	
		Section B				
10	(a) cor	npares the potentials/voltages at the (inverting and non-inve	erting) <u>inputs</u>	B1		
	eith or sta	ther output (potential) dependent on which input is the $V^+ > V^-$, then V_{OUT} is positive tes the other condition	larger	B1 B1	[3]	
	(b) (i)	ring drawn around both the LEDs (and series resistors)		B1	[1]	
	(ii)	$V^- = (1.5 \times 2.4)/(1.2 + 2.4) = 1.0 \text{ V}$ (allow $1.5 \times 2.4/3.6 = 1.0 \text{ V}$)		B1	[1]	
	(iii)	 V_{OUT} switches at +1.0 V maximum V_{OUT} is 5.0 V when curve is above +1.0 V, V_{OUT} is negative (or v.v.) 		B1 B1 B1	[3]	
		2. at time t_1 , diode R is emitting light, diode G is not emitting at time t_2 , diode R is not emitting, diode G is emitting (must be consistent with graph line. If no graph line the	•	B1 B1	[2]	
11	(a) X-r	(a) X-ray: flat/shadow/2D image regardless of depth of object/depth not indicated				
	CT scan: built up from (many) images at different angles image is three-dimensional image can be rotated/viewed at different angles				[5]	
	(b) (i)	$I = I_0 e^{-\mu x}$ $0.25 = e^{-0.69x}$ x = 2.0 mm (allow 1 s.f.)		C1 A1	[2]	
	(ii)	for aluminium, $I/I_0 = e^{-0.46 \times 2.4}$				
		= 0.33 fraction = 0.33×0.25 = 0.083		C1	[O]	
	(iii)	-0.063 gain/dB = $10 \lg(I/I_0)$		A1 C1	[2]	
	. ,	$= 10 \lg(0.083)$ $= (-) 10.8 dB (allow 2 s.f.)$ with negative sign		A1 B1	[3]	
12	(a) (i)	satellite is in equatorial orbit travelling from west to east period of 24 hours/1 day		B1 B1 B1	[3]	

			GCE A LEVEL – May/June 2014	9702	42	
(ii	or	sig	link signal is highly attenuated gnal is highly amplified (before transmissi vnlink signal swamping the uplink signal	on) as downlink signa	I B1 B1	[2]
(b) speed of signal is same order of magnitude in both systems optic fibre link (much) shorter than via satellite time delay using optic fibre is less						[3]

Syllabus

Paper

Mark Scheme

Page 6