MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9702	42

Section A

1 (a) gravitational force provides/is the centripetal force
$v=\sqrt{ }(G M / r)$
AO
allow gravitational field strength provides/is the centripetal acceleration
$G M / r^{2}=v^{2} / r$
(b) (i) kinetic energy increase/change $=$ loss/change in (gravitational) potential energy
$1 / 2 m V_{0}{ }^{2}=G M m / x$
$V_{0}{ }^{2}=2 G M / x$
$V_{0}=\sqrt{ }(2 G M / x)$
(max. 2 for use of r not x)
(ii) V_{0} is (always) greater than v (for $x=r$) M1
so stone could not enter into orbit A1
(expressions in (a) and (b)(i) must be dimensionally correct)

$$
\begin{aligned}
& 2 \text { (a) use of kelvin temperatures } \\
& \text { both values of }(V / T) \text { correct }(11.87), V / T \text { is constant so pressure is constant }
\end{aligned}
$$

(do not allow use of V instead of ΔV)
(ii) increase/change in internal energy = heating of system

$$
\begin{array}{lr}
\text { + work done on system } & \text { C1 } \\
=565-160 & \\
=405 \mathrm{~J} & \text { A1 }
\end{array}
$$

(c) internal energy $=$ sum of kinetic energy and potential energy $/ E_{K}+E_{P} \quad \mathrm{~B} 1$
no intermolecular forces
no potential energy (so $\Delta U=\Delta E_{K}$)

3 (a) resonance
(b) $\mathrm{Pt}=m c \Delta \theta$

C1
$750 \times 2 \times 60=0.28 \times c \times(98-25)$
C1
$c=4400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ A1
(use of $\Delta \theta=73+273$ max. 1/3)
(use of $t=2 s$ not 120s max. 2/3)

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9702	42

(c) e.g. some microwave leakage from the cooker
e.g. container for the water is also heated
(any sensible suggestion)
B1

4 (a) (i) $F_{E}=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r^{2}$
C1

$$
\begin{align*}
& =8.99 \times 10^{9} \times\left(1.6 \times 10^{-19}\right)^{2} /\left(2.0 \times 10^{-15}\right)^{2} \\
& =58 \mathrm{~N} \tag{A1}
\end{align*}
$$

(ii) $F_{G}=G m_{1} m_{2} / r^{2}$
$=6.67 \times 10^{-11} \times\left(1.67 \times 10^{-27}\right)^{2} /\left(2.0 \times 10^{-15}\right)^{2}$
$=4.7 \times 10^{-35} \mathrm{~N}$
(b) (i) force of repulsion (much) greater than force of attraction B1
must be some other force of attraction M1
to hold nucleus together A1
(Do not allow if $F_{\mathrm{G}}>F_{\mathrm{E}}$ in (a) or one of the forces not calculated in (a))
(ii) outside nucleus there is repulsion between protons
either attractive force must act only in nucleus or if not short range, all nuclei would stick together

5 (a) only curve with decreasing gradient
M1
acceptable value near $x=0$ and does not reach zero
A1
(if graph line less than 4.0 cm do not allow 11 mark)
(no credit if graph line has positive and negative values of V_{H})
$\begin{array}{ll}\text { (b) graph: from } 0 \text { to } 2 T \text {, two cycles of a sinusoidal wave } & \text { M1 } \\ \text { all peaks above } 3.5 \mathrm{mV} & \mathrm{C} 1\end{array}$
peaks at $4.95 / 5.0 \mathrm{mV}$ (allow 4.8 mV to 5.2 mV) A1
(c) e.m.f. induced in coil when magnetic field/flux is changing/cutting B1
either at each position, magnetic field does not vary
so no e.m.f. is induced in the coil/no reading on the millivoltmeter
or at each position, switch off current and take millivoltmeter reading
or at each position, rapidly remove coil from field and take meter reading

6 (a) electric and magnetic fields normal to each other
either charged particle enters region normal to both fields or correct B direction w.r.t. E for zero deflection
for no deflection, $v=E / B$
(no credit if magnetic field region clearly not overlapping with electric field region)

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9702	42

$$
\text { (b) (i) } \begin{aligned}
m & =B q r / v \\
& =\left(640 \times 10^{-3} \times 1.6 \times 10^{-19} \times 6.2 \times 10^{-2}\right) /\left(9.6 \times 10^{4}\right) \\
& =6.61 \times 10^{-26} \mathrm{~kg} \\
& =\left(6.61 \times 10^{-26}\right) /\left(1.66 \times 10^{-27}\right) \mathrm{u} \\
& =40 \mathrm{u}
\end{aligned}
$$

$$
\mathrm{C} 1
$$

(ii) $q / m \propto 1 / r \quad$ or $\quad m$ constant and $q \propto 1 / r \quad$ B1 q / m for A is twice that for B ions in path A have (same mass but) twice the charge (of ions in path B)

B1

7 (a) angle subtended at the centre of a circle
B1 by an arc equal in length to the radius B1
(b) (i) arc $=$ distance \times angle C1

$$
\begin{aligned}
\text { diameter } & =3.8 \times 10^{5} \times 9.7 \times 10^{-6} \\
& =3.7 \mathrm{~km}
\end{aligned}
$$

(ii) Mars is (much) further from Earth/away (answer must be comparative) angle (at telescope is much) smaller

8 (a) photon energy $=h c / \lambda$

$$
\begin{align*}
& =\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(590 \times 10^{-9}\right) \tag{C1}\\
& =3.37 \times 10^{-19} \mathrm{~J}
\end{align*}
$$

C1
$\begin{aligned} \text { number } & =\left(3.2 \times 10^{-3}\right) /\left(3.37 \times 10^{-19}\right) \\ & =9.5 \times 10^{15}\left(\text { allow } 9.4 \times 10^{15}\right)\end{aligned}$
A1
(b) (i) $p=h / \lambda$

$$
\begin{align*}
& =\left(6.63 \times 10^{-34}\right) /\left(590 \times 10^{-9}\right) \\
& =1.12 \times 10^{-27} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{C1}
\end{align*}
$$

total momentum $=9.5 \times 10^{15} \times 1.12 \times 10^{-27}$

$$
=1.06 \times 10^{-11} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
$$

(ii) force $=1.06 \times 10^{-11} \mathrm{~N}$

A1
[3]
[1]

9 (a) time for number of atoms/nuclei/activity (of the isotope) M1 to be reduced to one half (of its initial value)

$$
\begin{aligned}
& \text { (b) (i) } A=\lambda N \\
& \text { C1 } \\
& 460=N \times \ln 2 /(8.1 \times 24 \times 60 \times 60) \\
& \text { (ii) number of water molecules in } 1.0 \mathrm{~kg}=\left(6.02 \times 10^{23}\right) /\left(18 \times 10^{-3}\right) \\
& =3.3 \times 10^{25} \\
& \text { ratio }=\left(3.3 \times 10^{25}\right) /\left(4.6 \times 10^{8}\right) \\
& =7.2(7.3) \times 10^{16}
\end{aligned}
$$

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9702	42

(c) $A=A_{0} \mathrm{e}^{-\lambda t}$ and $\lambda t_{1 / 2}=\ln 2$
$170=460 \exp (-\{\ln 2 t\} / 8.1)$
C1
$t=11.6$ days (allow 2 s.f.) A1

Section B

10 (a) compares the potentials/voltages at the (inverting and non-inverting) inputs
B1
either output (potential) dependent on which input is the larger
or $\quad V^{+}>V^{-}$, then $V_{\text {OUT }}$ is positive B1
states the other condition
B1
(b) (i) ring drawn around both the LEDs (and series resistors) B1
(ii) $V=(1.5 \times 2.4) /(1.2+2.4)=1.0 V$

B1
(allow $1.5 \times 2.4 / 3.6=1.0 \mathrm{~V}$)
(iii) 1. Vout switches at +1.0 V B1
maximum $V_{\text {Out }}$ is $5.0 \mathrm{~V} \quad \mathrm{~B} 1$
when curve is above +1.0 V , $V_{\text {Out }}$ is negative (or v.v.)
B1
$\begin{array}{ll}\text { 2. at time } t_{1} \text {, diode } \mathrm{R} \text { is emitting light, diode } \mathrm{G} \text { is not emitting } & \mathrm{B} 1 \\ \text { at time } t_{2} \text {, diode } \mathrm{R} \text { is not emitting, diode } \mathrm{G} \text { is emitting } \\ \text { (must be consistent with graph line. If no graph line then 0/2) } & \mathrm{B} 1\end{array}$

11 (a) X-ray: flat/shadow/2D image
B1
regardless of depth of object/depth not indicated
B1
CT scan: built up from (many) images at different angles
image is three-dimensional
image can be rotated/viewed at different angles B1
(b) (i) $I=I_{0} \mathrm{e}^{-\mu x}$

C1
$0.25=\mathrm{e}^{-0.69 \mathrm{x}}$
$x=2.0 \mathrm{~mm}$ (allow 1 s.f.)
(ii) for aluminium, $I / I_{0}=\mathrm{e}^{-0.46 \times 2.4}$

$$
\begin{equation*}
=0.33 \tag{C1}
\end{equation*}
$$

fraction $=0.33 \times 0.25$

$$
=0.083
$$

$$
\text { (iii) } \begin{aligned}
\text { gain } / \mathrm{dB} & =10 \lg \left(I / I_{0}\right) & & \mathrm{C} 1 \\
& =10 \lg (0.083) & & \mathrm{A} 1 \\
& =(-) 10.8 \mathrm{~dB} \text { (allow } 2 \text { s.f. }) & & \mathrm{B} 1
\end{aligned}
$$

12 (a) (i) satellite is in equatorial orbit B1
travelling from west to east B1
period of 24 hours/ 1 day B1

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9702	42

(ii) either uplink signal is highly attenuated
or signal is highly amplified (before transmission) as downlink signalB1
prevents downlink signal swamping the uplink signal
B1
(b) speed of signal is same order of magnitude in both systems B1 optic fibre link (much) shorter than via satellite M1 time delay using optic fibre is less A1

