MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme GCE AS/A LEVEL – May/June 2014	Syllabus 9702	Paper 43			
L	Section A							
1	• •		one bringing unit mass inity (to the point)		M1 A1	[2]		
	(b) E	Ξ _P = —n	ηφ		B1	[1]		
	(c) ¢	∮∝ 1/ <i>x</i>			C1			
	e	either at 6R from centre, potential is $(6.3 \times 10^7)/6$ (= $1.05 \times 10^7 \text{ J kg}^{-1}$) and at 5R from centre, potential is $(6.3 \times 10^7)/5$ (= $1.26 \times 10^7 \text{ J kg}^{-1}$) change in energy = $(1.26 - 1.05) \times 10^7 \times 1.3$ = $2.7 \times 10^6 \text{ J}$			C1 C1 A1			
	c		change in potential = $(1/5 - 1/6) \times (6.3 \times 10^7)$ change in energy = $(1/5 - 1/6) \times (6.3 \times 10^7) \times 1.3$ = 2.7×10^6 J		(C1) (C1) (A1)	[4]		
2	• •		nber of atoms of carbon-12		M1 A1	[2]		
	(b) ((i) am	ount = 3.2/40 = 0.080 mol		A1	[1]		
	(i	, . р×	= nRT 210 × 10 ⁻⁶ = 0.080 × 8.31 × 310 9.8 × 10 ⁵ Pa (do not credit if T in °C not K)		C1 A1	[2]		
	(ii	ii) eith	ner $pV = 1/3 \times Nm < c^2 >$ $N = 0.080 \times 6.02 \times 10^{23} (= 4.82 \times 10^{22})$ and $m = 40 \times 1.66 \times 10^{-27} (= 6.64 \times 10^{-26})$ $9.8 \times 10^5 \times 210 \times 10^{-6} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times c^2 > = 1.93 \times 10^5$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	10 ^{−26} × <c²></c²>	C1 C1 A1	[3]		
		or	$Nm = 3.2 \times 10^{-3}$ 9.8 × 10 ⁵ × 210 × 10 ⁻⁶ = 1/3 × 3.2 × 10 ⁻³ × <c<sup>2 > <c<sup>2 > = 1.93 × 10⁵</c<sup></c<sup>		(C1) (C1)			
		or	$c_{\text{RMS}} = 440 \text{ m s}^{-1}$ $1/2 \ m < c^2 > = 3/2 \ kT$ $1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 32$ $< c^2 > = 1.93 \times 10^5$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	310	(A1) (C1) (C1) (A1)			
			(if T in °C not K award max 1/3, unless already per	nalised in (b)(ii))				

	Page 3		age 3 Mark Scheme GCE AS/A LEVEL – May/June 2014			Syllabus 14 9702	Paper 43	•
3	(a)	or	li	hange in v quid volum	plume = $(1.69 - 1.00 \times 10^{-3})$ e << volume of vapour $10^5 \times 1.69 = 1.71 \times 10^5$ (J)	,	M1 A1	[2]
	(b)	(i)	1. h	eating of s	stem/thermal energy supplied to	the system	B1	[1]
			2 . w	ork done c	n the system		B1	[1]
		(ii)			0 ⁶) – (1.71 × 10 ⁵) ⁶ J (3 s.f. needed)		C1 A1	[2]
4	(a)	kin	etic (e	energy)/KE	Eκ		B1	[1]
	(b)	or nev	<u>n</u> w amp			t numerical working	B1 B1 B1	[3]
5	(a)	gra	c	urve with o	at constant potential = V_0 from x ecreasing gradient ugh (2r, 0.50 V_0) and (4r, 0.25 V_0)		B1 M1 A1	[3]
	(b)	gra	c p	urve with o assing thro	at $E = 0$ from $x = 0$ to $x = r$ ecreasing gradient from (r, E_0) ugh ($2r, \frac{1}{4}E_0$) x line must be drawn to $x = 4r$ and	nd must not touch x-axis)	B1 M1 A1	[3]
6	(a)	(i)	ene	rgy = EQ	2		C1	
				= 9.0 = 0.20	≤ 22 × 10 ^{−3} J		A1	[2]
		(ii)		C = Q/V / = (22 × 1 = 4.7 V	0 ⁻³)/(4700 × 10 ⁻⁶)		C1 A1	[2]
			2.	either	$E = \frac{1}{2}CV^{2}$ = $\frac{1}{2} \times 4700 \times 10^{-6} \times 4.7^{2}$		C1	
					$= 72 \times 4700 \times 10^{-2} \text{ J}$ = 5.1 × 10 ⁻² J		A1	[2]
				or	$E = \frac{1}{2}QV = \frac{1}{2} \times 22 \times 10^{-3} \times 4.7$		(C1)	ļ
					$= 5.1 \times 10^{-2} \text{ J}$		(A1)	
				or	$E = \frac{1}{2}Q^{2}/C$ = $\frac{1}{2} \times (22 \times 10^{-3})^{2}/4700 \times 10^{-3}$	6	(C1)	
					$= 5.1 \times 10^{-2} \text{ J}$		(A1)	

	Page 4		Mark Scheme	Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2014	9702	43	
	(b)	energy lost (as thermal energy) in resistance/wires/battery/resistor (award only if answer in (a)(i) > answer in (a)(ii)2)				
7	(a)	graph: $V_{\rm H}$ increases from zero when current switched on $V_{\rm H}$ then non-zero constant $V_{\rm H}$ returns to zero when current switched off				[3]
	(b)		duced) e.m.f. proportional to rate change of (magnetic) flux (linkage)		M1 A1	[2]
		zer	se as current is being switched on o e.m.f. when current in coil se in opposite direction when switching off		B1 B1 B1	[3]
8	(a)	allow: d	e and equal amounts (of charge) liscrete amounts of 1.6 \times 10 ⁻¹⁹ C/elementary charge/e ntegral multiples of 1.6 \times 10 ⁻¹⁹ C/elementary charge/e		B1	[1]
	(b)	weight = 4.8 × 10 q = 4.9 :	= <i>qV/d</i>) ^{−14} = (<i>q</i> × 680)/(7.0 × 10 ^{−3}) × 10 ^{−19} C		C1 A1	[2]
	(c)		tary charge = 1.6×10^{-19} C (allow 1.6×10^{-19} C to $1.7 \times$ the values are (approximately) multiples of this	≈ 10 ⁻¹⁹ C)	MO	
		or i	it is a common factor highest common factor		C1 A1	[2]
9	(a)	max max rate	time delay between illumination and emission x. (kinetic) energy of electron dependent on frequency x. (kinetic) energy of electron independent of intensity e of emission of electrons dependent on/proportional to ree separate statements, one mark each, maximum 3)	intensity	В3	[3]
	(b)		oton) interaction with electron may be below surface ergy required to bring electron to surface		B1 B1	[2]

	Page 5			Syllabus	Paper	•	
			GCE AS/A LEVEL – May/June 2014	9702	43		
		(ii)	1. threshold frequency = 5.8×10^{14} Hz		A1	[1]	
			2. $\Phi = hf_0$		C1		
			= $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$ = 3.84×10^{-19} (J)		C1		
			$= (3.84 \times 10^{-19})/(1.6 \times 10^{-19})$				
			= 2.4 eV		A1	[3]	
			or				
			$hf = \Phi + E_{MAX}$	al la insta	(C1)		
			chooses point on line and substitutes values E_{MAX} , <i>f</i> an equation with the units of the <i>hf</i> term converted from J		(C1)		
			Φ = 2.4 eV				
10	(a)		ergy required to separate the nucleons (in a nucleus)		M1		
			nfinity ow reverse statement)		A1	[2]	
		、	,				
	(b)	(i)			C1		
			= 9.11×10^{-3} u binding energy = $9.11 \times 10^{-3} \times 930$		C1		
			= 8.47 MeV	to 9 51 MaV/	A1	[3]	
			(allow 930 to 934 MeV so answer could be in range 8.47 (allow 2 s.f.)	10 0.31 MeV)			
		(ii)	$\Delta m = 211.70394 - 209.93722$				
			= 1.76672 u binding energy per nucleon = (1.76672 × 930)/210		C1 C1		
			= 7.82 MeV		A1	[3]	
			(allow 930 to 934 MeV so answer could be in range 7.82 (allow 2 s.f.)	to 7.86 MeV)			
	(c)	<u>tota</u>	al binding energy of barium and krypton		M1		
		is g	reater than binding energy of uranium		A1	[2]	
			Section B				
11	(2)	(i)			B1	[1]	
11	(a)		inverting amplifier			[1]	
		(ii)	gain is <u>very</u> large/infinite <i>V</i> ⁺ is earthed/zero		B1 B1		
			for amplifier not to saturate, P must be (almost) earth/zero)	B1	[3]	
	(b)	(i)	<i>R</i> _A = 100 kΩ		A1		
	. ,	.,	$R_{\rm B}$ = 10 k Ω		A1	[0]	
			V _{IN} = 1000 mV		A1	[3]	
		(ii)	variable range meter		B1	[1]	

	Pa	ge 6	Mark Scheme		Syllabus	Paper	•	
			GCE AS	A LEVEL – May/June 2014	9702	43		
12	(a)	series of X-ray images (for one section/slice) taken from different angles to give image of the section/slice repeated for many slices to build up three-dimensional image (of whole object)				M1 M1 A1 M1 A1	[5]	
	(b)		deduction of background from readings division by three					
		P=5 G	Q = 9 R = 7 S =	13				
		(four cor	rect 2/2, three co	rrect 1/2)		A2	[4]	
13	(a)	 a) e.g. noise can be eliminated/waveform can be regenerated extra bits of data can be added to check for errors cheaper/more reliable greater <u>rate</u> of transfer of data (1 each, max 2) 						
	(b)		bits all at one tim s the bits one afte			B1 B1	[2]	
	(c)	sampling	sampling frequency must be higher than/(at least) twice frequency to be sampled					
	(0)	either higher (range of) frequencies reproduced on the disc				M1		
		or lower (range of) frequencies on phone either higher quality (of sound) on disc				A1		
				und) not required for phone		B1	[3]	
14	(a)	reduction	n in power	(allow intensity/amplitude)		B1	[1]	
	(b)	(i) atter	nuation = 2.4 × 30 = 72 dB	0		۸ 1	[4]	
			- 72 UB			A1	[1]	
		72 =	A/attenuation/dB = = 10 lg(P_{IN}/P_{OUT}) $p = 1.6 \times 10^7$	= 10 lg(<i>P</i> ₂ / <i>P</i> ₁) or –72 = 10 lg(P _{OUT} / <i>P</i> _{IN})		C1 C1 A1	[3]	
			., .,					
	(c)			e manageable numbers to be used amplifiers are added, not multiplie		B1	[1]	