CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	43

Section A

1 (a) work done bringing unit mass
M1
from infinity (to the point)
A1
(b) $E_{P}=-m \phi$

B1
(c) $\phi \propto 1 / x$
either at $6 R$ from centre, potential is $\left(6.3 \times 10^{7}\right) / 6 \quad\left(=1.05 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}\right)$ and at $5 R$ from centre, potential is $\left(6.3 \times 10^{7}\right) / 5 \quad\left(=1.26 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}\right)$ change in energy $=(1.26-1.05) \times 10^{7} \times 1.3$

$$
=2.7 \times 10^{6} \mathrm{~J}
$$

or \quad change in potential $=(1 / 5-1 / 6) \times\left(6.3 \times 10^{7}\right)$
change in energy $=(1 / 5-1 / 6) \times\left(6.3 \times 10^{7}\right) \times 1.3$

$$
\begin{equation*}
=2.7 \times 10^{6} \mathrm{~J} \tag{C1}
\end{equation*}
$$

2 (a) the number of atoms
M1
in 12 g of carbon-12
A1
(b) (i) amount $=3.2 / 40$

$$
=0.080 \mathrm{~mol}
$$

(ii) $p V=n R T$

$$
p \times 210 \times 10^{-6}=0.080 \times 8.31 \times 310 \quad \text { C1 }
$$

$$
p=9.8 \times 10^{5} \mathrm{~Pa}
$$

(do not credit if T in ${ }^{\circ} \mathrm{C}$ not K)
(iii) either $p V=1 / 3 \times N m\left\langle c^{2}\right\rangle$

$$
N=0.080 \times 6.02 \times 10^{23}\left(=4.82 \times 10^{22}\right)
$$

$$
\begin{align*}
& \text { and } m=40 \times 1.66 \times 10^{-27}\left(=6.64 \times 10^{-26}\right) \\
& \text { C1 } \\
& 9.8 \times 10^{5} \times 210 \times 10^{-6}=1 / 3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times\left\langle c^{2}\right\rangle \quad \mathrm{C} 1 \\
& \left\langle c^{2}\right\rangle=1.93 \times 10^{5} \\
& C_{\text {RMS }}=440 \mathrm{~m} \mathrm{~s}^{-1} \\
& \text { A1 } \\
& 9.8 \times 10^{5} \times 210 \times 10^{-6}=1 / 3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times\left\langle c^{2}\right\rangle \quad \mathrm{C} 1 \\
& c_{\text {RMS }}=440 \mathrm{~m} \mathrm{~s}^{-1} \\
& \text { or } \quad N m=3.2 \times 10^{-3} \tag{C1}\\
& 9.8 \times 10^{5} \times 210 \times 10^{-6}=1 / 3 \times 3.2 \times 10^{-3} \times\left\langle c^{2}\right\rangle \\
& \left\langle c^{2}\right\rangle=1.93 \times 10^{5} \\
& C_{\text {RMS }}=440 \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}\\
& \text { or } \quad 1 / 2 \mathrm{~m}<c^{2}>=3 / 2 \mathrm{kT} \tag{C1}\\
& 1 / 2 \times 40 \times 1.66 \times 10^{-27}\left\langle c^{2}\right\rangle=3 / 2 \times 1.38 \times 10^{-23} \times 310 \tag{C1}\\
& \left\langle c^{2}\right\rangle=1.93 \times 10^{5} \\
& C_{\text {RMS }}=440 \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}
\end{align*}
$$

(if T in ${ }^{\circ} \mathrm{C}$ not K award max $1 / 3$, unless already penalised in (b)(ii))

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	43

3 (a) either change in volume $=\left(1.69-1.00 \times 10^{-3}\right)$
or liquid volume << volume of vapour M1
work done $=1.01 \times 10^{5} \times 1.69=1.71 \times 10^{5}(\mathrm{~J}) \quad$ A1
(b) (i) 1. heating of system/thermal energy supplied to the system
2. work done on the system

B1
(ii) $\begin{aligned} \Delta U & =\left(2.26 \times 10^{6}\right)-\left(1.71 \times 10^{5}\right) & & \text { C1 } \\ & =2.09 \times 10^{6} \mathrm{~J} & (3 \text { s.f. needed }) & \text { A1 }\end{aligned}$

4 (a) kinetic (energy) $/ K E / E_{\mathrm{K}}$
(b) either change in energy $=0.60 \mathrm{~mJ}$
or max E proportional to (amplitude) ${ }^{2} /$ equivalent numerical working B1
new amplitude is 1.3 cm
B1
change in amplitude $=0.2 \mathrm{~cm}$

5 (a) graph: straight line at constant potential $=V_{0}$ from $x=0$ to $x=r$
curve with decreasing gradient
passing through $\left(2 r, 0.50 V_{0}\right)$ and $\left(4 r, 0.25 V_{0}\right)$
A1
(b) graph: straight line at $E=0$ from $x=0$ to $x=r$
passing through ($2 r, 1 / 4 E_{0}$)
6 (a) (i) energy $=E Q$

$$
\begin{align*}
& =9.0 \times 22 \times 10^{-3} \tag{C1}\\
& =0.20 \mathrm{~J}
\end{align*}
$$

curve with decreasing gradient from (r, E_{0}) A1
(for 3rd mark line must be drawn to $x=4 r$ and must not touch x-axis)
A1
(ii) 1. $C=Q / V$

$$
\begin{align*}
V & =\left(22 \times 10^{-3}\right) /\left(4700 \times 10^{-6}\right) \tag{C1}\\
& =4.7 \mathrm{~V}
\end{align*}
$$

A1
2. either $E=1 / 2 C V^{2}$

$$
=1 / 2 \times 4700 \times 10^{-6} \times 4.7^{2}
$$

$$
\begin{equation*}
=5.1 \times 10^{-2} \mathrm{~J} \tag{C1}
\end{equation*}
$$

A1
or

$$
\begin{align*}
E & =1 / 2 Q^{2} / C \tag{C1}\\
& =1 / 2 \times\left(22 \times 10^{-3}\right)^{2} / 4700 \times 10^{-6} \\
& =5.1 \times 10^{-2} \mathrm{~J} \tag{A1}
\end{align*}
$$

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	43

(b) energy lost (as thermal energy) in resistance/wires/battery/resistor
(award only if answer in (a)(i) > answer in (a)(ii)2)

B1 [1] (award only if answer in (a)(i) > answer in (a)(ii)2)

7 (a) graph: V_{H} increases from zero when current switched on
B1
V_{H} then non-zero constant B1
V_{H} returns to zero when current switched off
B1
(b) (i) (induced) e.m.f. proportional to rate M1
of change of (magnetic) flux (linkage)
(ii) pulse as current is being switched on B1
zero e.m.f. when current in coil
B1
pulse in opposite direction when switching off
B1

8 (a) discrete and equal amounts (of charge)
B1
allow: discrete amounts of $1.6 \times 10^{-19} \mathrm{C} /$ elementary charge/e integral multiples of $1.6 \times 10^{-19} \mathrm{C} /$ elementary charge/e
(b) weight $=q V / d$
$4.8 \times 10^{-14}=(q \times 680) /\left(7.0 \times 10^{-3}\right) \quad \mathrm{C} 1$
$q=4.9 \times 10^{-19} \mathrm{C}$
A1
$\begin{array}{ll}\text { (c) elementary charge }=1.6 \times 10^{-19} \mathrm{C} \text { (allow } 1.6 \times 10^{-19} \mathrm{C} \text { to } 1.7 \times 10^{-19} \mathrm{C} \text {) } & \text { M0 } \\ \text { either the values are (approximately) multiples of this } & \mathrm{C} 1 \\ \text { or it is a common factor }\end{array}$
it is the highest common factor A1

9 (a) e.g. no time delay between illumination and emission max. (kinetic) energy of electron dependent on frequency max. (kinetic) energy of electron independent of intensity rate of emission of electrons dependent on/proportional to intensity
(any three separate statements, one mark each, maximum 3)
(b) (i) (photon) interaction with electron may be below surface

B1 energy required to bring electron to surface B1

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2014	9702	43

(ii) 1. threshold frequency $=5.8 \times 10^{14} \mathrm{~Hz}$
2. $\Phi=h f_{0}$
C1

$$
\begin{aligned}
& =6.63 \times 10^{-34} \times 5.8 \times 10^{14} \\
& =3.84 \times 10^{-19}(\mathrm{~J}) \\
& =\left(3.84 \times 10^{-19}\right) /\left(1.6 \times 10^{-19}\right) \\
& =2.4 \mathrm{eV}
\end{aligned}
$$

C1
A1

A1 [1]
or
$h f=\Phi+E_{\text {MAX }}$
chooses point on line and substitutes values $E_{\text {MAX }}, f$ and h into equation with the units of the $h f$ term converted from J to eV $\Phi=2.4 \mathrm{eV}$
$\begin{array}{ll}10 & \text { (a) energy required to separate the nucleons (in a nucleus) } \\ \text { to infinity } \\ \text { (allow reverse statement) } & \text { M1 } \\ & \end{array}$
(b) (i) $\begin{array}{rlrl}\Delta m & =(2 \times 1.00867)+1.00728-3.01551 & & \mathrm{C} 1 \\ & =9.11 \times 10^{-3} \mathrm{u} & \mathrm{C} 1 \\ & & & \\ & & =8.47 \mathrm{MeV} & \end{array}$

$$
=8.47 \mathrm{MeV}
$$

(allow 930 to 934 MeV so answer could be in range 8.47 to 8.51 MeV) (allow 2 s.f.)
(ii) $\quad \Delta m=211.70394-209.93722$

$$
=1.76672 \mathrm{u}
$$

C1
binding energy per nucleon $=(1.76672 \times 930) / 210$
C1

$$
=7.82 \mathrm{MeV}
$$

A1
(allow 930 to 934 MeV so answer could be in range 7.82 to 7.86 MeV) (allow 2 s.f.)
(c) total binding energy of barium and krypton
is greater than binding energy of uranium
M1
A1

Section B

11 (a) (i) inverting amplifier

B1
V^{+}is earthed/zero B1
for amplifier not to saturate, P must be (almost) earth/zero
(b) (i) $\begin{array}{ll}R_{\mathrm{A}}=100 \mathrm{k} \Omega & \mathrm{A} 1 \\ R_{\mathrm{B}}=10 \mathrm{k} \Omega & \mathrm{A} 1\end{array}$
$V_{\text {IN }}=1000 \mathrm{mV}$ A1
(ii) variable range meter

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2014	9702	43

12 (a) series of X-ray images (for one section/slice) M1
taken from different angles M1
to give image of the section/slice A1
repeated for many slices M1
to build up three-dimensional image (of whole object) A1
(b) deduction of background from readings
division by three
$P=5 \quad Q=9 \quad R=7 \quad S=13$
(four correct $2 / 2$, three correct $1 / 2$)
A2

13 (a) e.g. noise can be eliminated/waveform can be regenerated
extra bits of data can be added to check for errors
cheaper/more reliable
greater rate of transfer of data
(1 each, max 2)
B2
(b) receives bits all at one time B1 transmits the bits one after another
(c) sampling frequency must be higher than/(at least) twice frequency to be sampled either higher (range of) frequencies reproduced on the disc
or lower (range of) frequencies on phone A1
either higher quality (of sound) on disc
or high quality (of sound) not required for phone

14 (a) reduction in power (allow intensity/amplitude)
(b) (i) attenuation $=2.4 \times 30$

$$
=72 \mathrm{~dB}
$$

(ii) gain/attenuation/dB=10 $\lg \left(P_{2} / P_{1}\right) \quad \mathrm{C} 1$
$72=10 \lg \left(P_{\text {IN }} / P_{\text {out }}\right)$ or $\quad-72=10 \lg \left(\right.$ Pout $\left./ P_{\text {in }}\right)$ C1 ratio $=1.6 \times 10^{7}$
(c) e.g. enables smaller/more manageable numbers to be used
e.g. gains in dB for series amplifiers are added, not multiplied

