CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9702 PHYSICS

9702/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

1 (a) (work $=$) force \times distance or force \times displacement or $(W=) F \times d$
(b) (p.d. $=$) work (done) or energy (transformed) (from electrical to other forms)
(c) $R=V / I$
units of $V: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{As}$ and units of I : A
or
$R=P / I^{2}[$ or $P=V I$ and $V=I R]$
units of $P: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$ and units of I : A
or
$R=V^{2} / P$
units of $V: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / A s$ and units of $P: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
units of R : $\left(\mathrm{kgm}^{2} \mathrm{~s}^{-2} / \mathrm{A}^{2} \mathrm{~s}=\right) \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$

2 (a) speed decreases/stone decelerates to rest/zero at 1.25 s
speed then increases/stone accelerates (in opposite direction)
(b) (i) $v=u+a t\left(\right.$ or $s=u t+1 / 2 a t^{2}$ and $\left.v^{2}=u^{2}+2 a s\right)$

$$
=0+(3.00-1.25) \times 9.81
$$

$$
=17.2(17.17) \mathrm{m} \mathrm{~s}^{-1}
$$

(ii) $s=u t+1 / 2 a t^{2}$

$$
s=1 / 2 \times 9.81 \times(1.25)^{2}[=7.66] \quad \mathrm{C} 1
$$

$s=1 / 2 \times 9.81 \times(1.75)^{2}[=15.02]$ C1
(distance $=7.66+15.02)$
$\left[v=u+a t=0+9.81 \times(2.50-1.25)=12.26 \mathrm{~m} \mathrm{~s}^{-1}\right]$
or
$s=1 / 2 \times 9.81 \times(1.25)^{2}[=7.66]$
$s=12.26 \times 0.50+1 / 2 \times 9.81 \times(3.00-2.50)^{2}[=7.36]$
(distance $=2 \times 7.66+7.36$)
Example alternative method:

$$
\begin{align*}
& s=\left(v^{2}-u^{2}\right) / 2 a=\left(12.26^{2}-0\right) / 2 \times 9.81[=7.66] \tag{C1}\\
& s=\left(v^{2}-u^{2}\right) / 2 a=\left(17.17^{2}-12.26^{2}\right) / 2 \times 9.81[=7.36] \tag{C1}
\end{align*}
$$

(distance $=2 \times 7.66+7.36)$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	22

22.7 (22.69 or 23)m
A1
(iii) $(s=15.02-7.66=) 7.4(7.36) \mathrm{m}$ (ignore sign in answer) down
(c) straight line from positive value of v to t axis same straight line crosses t axis at $t=1.25 \mathrm{~s}$ M1
same straight line continues with same gradient to $t=3.0 \mathrm{~s} \quad$ A1

3 (a) (i) (vertical component $=44 \sin 30^{\circ}=22 \mathrm{~N}$ A1
(ii) (horizontal component $=44 \cos 30^{\circ}=38(.1) \mathrm{N}$
(b) $W \times 0.64=22 \times 1.60$

C1
$(W=) 55 \mathrm{~N}$
A1
(c) F has a horizontal component (not balanced by W) or F has 38 N acting horizontally or 38 N acts on wall or vertical component of F does not balance W or F and W do not make a closed triangle of forces
(d) line from P in direction towards point on wire vertically above W and direction up

B1

4 (a) $(p=) m v$
$\Delta p\left(=-6.64 \times 10^{-27} \times 1250-6.64 \times 10^{-27} \times 1250\right)=1.66 \times 10^{-23} \mathrm{Ns}$
$\begin{array}{ll}\text { (b) (i) molecule collides with wall/container and there is a change in momentum } & \text { B1 } \\ \text { change in momentum / time is force or } \Delta p=F t & \mathrm{~B} 1 \\ \frac{\text { many/all/sum of }}{\text { pressure }} \text { molecular collisions over surface/area of container produces } & \text { B1 }\end{array}$
(ii) more collisions per unit time so greater pressure

B1
ar

5 (a) curved line showing decreasing gradient with temperature rise smooth line not touching temperature axis, not horizontal or vertical anywhere
(b) (i) (no energy lost in battery because) no/negligible internal resistance

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	22

(ii) $I=V / R$

$$
\begin{align*}
& =8 / 15 \times 10^{3} \text { or } 1.6 / 3.0 \times 10^{3} \text { or } 2.4 / 4.5 \times 10^{3} \text { or } 12 / 22.5 \times 10^{3} \tag{C1}\\
& =0.53 \times 10^{-3} \mathrm{~A}
\end{align*}
$$

A1
(iii) p.d. across $\mathrm{X}=12-8.0-3.0 \times 10^{3} \times 0.53 \times 10^{-3}(=2.4 \mathrm{~V})$

$$
R_{\mathrm{x}}=2.4 /\left(0.53 \times 10^{-3}\right)
$$

or
$R_{\mathrm{tot}}=12 / 0.53 \times 10^{-3}\left(=22.5 \times 10^{3} \Omega\right)$
$R_{\mathrm{x}}=(22.5-15.0-3.0) \times 10^{3}$
$4.5(2) \times 10^{3} \Omega$
(iv) resistance decreases hence current (in circuit) is greater
p.d. across X and Y is greater hence p.d across Z decreases
or explanation in terms of potential divider:
R_{Z} decreases so $R_{Z} /\left(R_{X}+R_{Y}+R_{Z}\right)$ is less
therefore p.d. across Z decreases

6 (a) progressive waves transfer/propagate energy and stationary waves do not
amplitude constant for progressive wave and varies (from max/antinode to $\mathrm{min} / \mathrm{zero} / \mathrm{node}$) for stationary wave
adjacent particles in phase for stationary wave and out of phase for progressive wave
(b) (i) wave/microwave from source/S reflects at reflector/R
reflected and (further) incident waves overlap/meet/superpose
waves have same frequency/wavelength/period and speed (so stationary waves formed)

B1
(ii) detector/D is moved between reflector/R and source/S (or v.v.)
maximum, minimum/zero, (maximum... etc.) observed on meter/deflections/readings/measurements/recordings
(iii) determine/measure the distance between adjacent minima/nodes or maxima/antinodes or across specific number of nodes/antinodes
wavelength is twice distance between adjacent nodes/minima or maxima/ antinodes (or other correct method of calculation of wavelength from measurement)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	22

(c) $v=f \lambda$
C1
$f=3.0 \times 10^{8} /\left(2.8 \times 10^{-2}\right)\left[=1.07 \times 10^{10} \mathrm{~Hz}\right]$ C1
11 (10.7) GHz A1

7 (a) 92 protons and 143 neutrons B1
(b)

	value
a	1
b	0
c	141
d	55

(a and b both required) B1 B1 B1

[3]

(c) kinetic energy (of products) or gamma/ γ (radiation or photon)

B1
(d) (total) mass on left-hand side/reactants is greater than (total) mass on right-hand side/products M1
difference in mass is (converted to) energy A1

