CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	43

Section A

1 (a) (gravitational) force proportional to product of masses and inversely proportional to square of separation reference to either point masses or particles or 'size' much less than separation
(b) gravitational force provides/is the centripetal force

B1
$G M_{N} m / r^{2}=m r \omega^{2}\left(\right.$ or $\left.m v^{2} / r\right)$
M1
$2 \pi / T$ (or $v=2 \pi r / T$) leading to $G M_{N}=4 \pi^{2} r^{3} / T^{2}$
A1
(c) $M_{N} / M_{U}=(3.55 / 5.83)^{3} \times(13.5 / 5.9)^{2}$
x^{3} factor correct
C1
T^{2} factor correct
C1
ratio $=1.18$ (allow 1.2)
A1
$\begin{array}{ll}\text { alternative method: } & \begin{array}{l}\text { mass of Neptune }=1.019 \times 10^{26} \mathrm{~kg} \\ \\ \text { mass of Uranus }=8.621 \times 10^{25} \mathrm{~kg} \\ \text { ratio }=1.18\end{array}\end{array}$

2 (a) (sum of) potential energy and kinetic energy of molecules/atoms/particles mention of random motion/distribution
(b) (i) $p V=n R T$
either at $A, 1.2 \times 10^{5} \times 4.0 \times 10^{-3}=n \times 8.31 \times 290$
or at $\mathrm{B}, \quad 3.6 \times 10^{5} \times 4.0 \times 10^{-3}=n \times 8.31 \times 870$
$n=0.20 \mathrm{~mol}$
(ii) $1.2 \times 10^{5} \times 7.75 \times 10^{-3}=0.20 \times 8.31 \times \operatorname{Tor} T=(7.75 / 4.0) \times 290$
$T=560 \mathrm{~K}$
C1
(Allow tolerance from graph: $7.7-7.8 \times 10^{-3} \mathrm{~m}^{3}$)
(c) temperature changes/decreases so internal energy changes/decreases
volume changes (at constant pressure) so work is done

3 (a) (numerically equal to) quantity of (thermal) energy/heat to change state/phase of unit mass
at constant temperature
A1
(allow $1 / 2$ for definition restricted to fusion or vaporisation)
(b) (i) at 70 W , mass s${ }^{-1}=0.26 \mathrm{~g} \mathrm{~s}^{-1}$
at 110 W , mass s$^{-1}=0.38 \mathrm{~g} \mathrm{~s}^{-1}$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	43

(ii) 1. $P+h=m L$ or substitution of one set of values
C1
$\begin{array}{ll}(110-70)=(0.38-0.26) L & \text { C1 } \\ L=330 \mathrm{Jg}^{-1} & \text { A1 }\end{array}$
2. either $70+h=0.26 \times 330$
or $110+h=0.38 \times 330$
C1
$h=17 / 16 / 15 \mathrm{~W}$
A1
[2]

4 (a) (i) frequency at which object is made to vibrate/oscillate
(ii) frequency at which object vibrates when free to do so
(iii) maximum amplitude of vibration of oscillating body

B1 when forced frequency equals natural frequency (of vibration)

B1
(b) e.g. vibration of quartz/piezoelectric crystal (what is vibrating)
either for accurate timing
or maximise amplitude of ultrasound waves (why it is useful)
A1
(c) e.g. vibrating metal panels (what is vibrating)
either place strengthening struts across the panel or change shape/area of panel (how it is reduced) A1

[2]

5 (a) (magnitude of electric field strength is the potential gradient B1 use of gradient at $x=4.0 \mathrm{~cm}$ M1
gradient $=4.5 \times 10^{4} \mathrm{NC}^{-1}\left(\right.$ allow $\left.\pm 0.3 \times 10^{4}\right)$ A1
or
$V=\frac{Q}{4 \pi \varepsilon_{0} x}$ and $E=\frac{Q}{4 \pi \varepsilon_{0} x^{2}}$ leading to $E=\frac{V}{x}$

$$
\begin{align*}
E & =1.8 \times 10^{3} / 0.04 \tag{M1}\\
& =4.5 \times 10^{4} \mathrm{NC}^{-1} \tag{A1}
\end{align*}
$$

(b) (i) $3.6 \times 10^{3} \mathrm{~V}$
(ii) capacitance $=Q / V$

$$
\begin{aligned}
& =\left(8.0 \times 10^{-9}\right) /\left(3.6 \times 10^{3}\right) \\
& =2.2 \times 10^{-12} \mathrm{~F}
\end{aligned}
$$

6 (a) (i) gravitational
(ii) gravitational and electric B1
(iii) magnetic and one other field given

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	43

(b) (i) out of (plane of) paper/page (not "upwards")

B1 [1]
(ii) $B=m v / q r$

$$
\begin{aligned}
& =\left(3.32 \times 10^{-26} \times 7.6 \times 10^{4}\right) /\left(1.6 \times 10^{-19} \times 6.1 \times 10^{-2}\right) \\
& =0.26 \mathrm{~T}
\end{aligned}
$$

C1
C1
A1
(c) sketch: semicircle with diameter $<12.2 \mathrm{~cm}$

B1

7 (a) can change (output) voltage efficiently or to suit different consumers/appliances by using transformers

B1
B1
(b) for same power, current is smaller

B1
less heating in cables/wires
or thinner cables possible
or less voltage loss in cables

8 (a) (i) $p=h / \lambda$

$$
\begin{aligned}
& =\left(6.63 \times 10^{-34}\right) /\left(6.50 \times 10^{-12}\right) \\
& =1.02 \times 10^{-22} \mathrm{Ns}
\end{aligned}
$$

(ii) $E=h c / \lambda$ or $E=p c$

$$
\begin{aligned}
& =\left(6.63 \times 10^{-34} \times 3.00 \times 10^{8}\right) /\left(6.50 \times 10^{-12}\right) \\
& =3.06 \times 10^{-14} \mathrm{~J}
\end{aligned}
$$

C1
(b) (i) $0.34 \times 10^{-12}=\left(6.63 \times 10^{-34}\right) /\left(9.11 \times 10^{-31} \times 3.0 \times 10^{8}\right) \times(1-\cos \theta)$ $\theta=30.7^{\circ}$
$\begin{array}{ll}\text { (ii) deflected electron has energy } & \text { M1 } \\ \text { this energy is derived from the incident photon } & \text { A1 }\end{array}$ deflected photon has less energy, longer wavelength (so $\Delta \lambda$ always positive)

9 (a) nucleus/nuclei emits M1
spontaneously/randomly A1
α-particles, β-particles, γ-ray photons A1
(b) (i) $N-\Delta N$ A1 [1]
(ii) $\Delta N / \Delta t$
(iii) $\Delta N / N$
(iv) $\Delta N / N \Delta t$
(c) graph: smooth curve in correct direction starting at (0,0)

M1
n at $2 t_{1 / 2}$ is 1.5 times that at $t_{1 / 2}(\pm 2 \mathrm{~mm})$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	43

Section B

10 (a) (i) $($ potential $=) 1.2 /(1.2+4.2) \times 4.5=+1.0 \mathrm{~V}$ A1 [1]
(ii) (for $V_{\text {IN }}>1.0 \mathrm{~V}$) $\mathrm{V}^{+}>\mathrm{V}^{-} \quad$ B1
output (of op-amp) is +5 V or positive M1
diode conducts giving +5 V across R or $\mathrm{V}_{\text {out }}$ is $+5 \mathrm{~V} \quad \mathrm{~A} 1$
(for $V_{\text {IN }}<1.0 \mathrm{~V}$) output of op-amp $-5 \mathrm{~V} /$ negative so diode does not conduct, giving $\mathrm{V}_{\text {out }}=0$ or 0 V across R
$\begin{array}{lll}\text { (b) (i) } \begin{array}{l}\text { square wave with maximum value }+5 \mathrm{~V} \text { and minimum value } 0 \\ \text { vertical sides in correct positions and correct phase }\end{array} & \text { M1 } \\ & \text { A1 }\end{array}$
(ii) re-shaping (digital) signals/regenerator (amplifier)
11 (a) change/increase/decrease anode/tube voltage
B1
electrons striking anode have changed (kinetic) energy/speed
B1
X-ray/photons/beam have different wavelength/frequency
B1
(b) (i) $I=I_{0} \mathrm{e}^{-\mu x}$
(ii) contrast is difference in degree of blackening (of regions of the image)
μ (very) similar so similar absorption of radiation (for same thickness) so little contrast
12 (a) (i) loudspeaker/doorbell/telephone etc.
(ii) television set/audio amplifier etc.
(iii) satellite/satellite dish/mobile phone etc.
(b) e.g. lower attenuation/fewer repeaters
more secure
less prone to noise/interference
physically smaller/less weight
lower cost greater bandwidth
(any two sensible suggestions, 1 each)
(c) (i) ratio $=25+(62 \times 0.21)$

$$
=38 \mathrm{~dB}
$$

(ii) ratio $/ \mathrm{dB}=10 \lg \left(P_{2} / P_{1}\right)$

$$
38=10 \lg \left(P /\left\{9.2 \times 10^{-6}\right\}\right)
$$

$P=58 \mathrm{~mW}$ or $5.8 \times 10^{-2} \mathrm{~W}$ A1
(allow $1 / 2$ for missing 10 in equation)

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9702	43

$\begin{array}{lll}13 \text { (a) (i) to align nuclei/protons } & \text { B1 } \\ \text { to cause Larmor/precessional frequency to be in r.f. region } & \text { B1 }\end{array}$
by knowing the frequency
(b) $E=2.82 \times 10^{-26} \times B$
$6.63 \times 10^{-34} \times 42 \times 10^{6}=2.82 \times 10^{-26} \times B$
$B=0.99 \mathrm{~T}$
A1

