Cambridge
International
AS \& A Level

Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS
Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9702	43

1 (a) (gravitational) potential at infinity defined as/is zero
(gravitational) force attractive so work got out/done as object moves from infinity (so potential is negative)
(b) (i) $\Delta E=m \Delta \phi$

$$
\begin{equation*}
=180 \times(14-10) \times 10^{8} \tag{C1}
\end{equation*}
$$

$$
=7.2 \times 10^{10} \mathrm{~J}
$$

increase
B1
(ii) energy required $=180 \times(10-4.4) \times 10^{8}$
or
energy per unit mass $=(10-4.4) \times 10^{8}$
C1
$1 / 2 \times 180 \times v^{2}=180 \times(10-4.4) \times 10^{8}$
or
$1 / 2 \times v^{2}=(10-4.4) \times 10^{8}$
$v=3.3 \times 10^{4} \mathrm{~ms}^{-1}$
A1

2 (a) e.g. time of collisions negligible compared to time between collisions
no intermolecular forces (except during collisions)
random motion (of molecules)
large numbers of molecules
(total) volume of molecules negligible compared to volume of containing vessel or
average/mean separation large compared with size of molecules
any two
(ii) $\frac{3}{2} k T=\frac{1}{2} m\left\langle c^{2}\right\rangle$
$\frac{3}{2} \times 1.38 \times 10^{-23} \times 300=\frac{1}{2} \times 6.6 \times 10^{-27} \times\left\langle c^{2}\right\rangle$
$\left\langle c^{2}\right\rangle=1.88 \times 10^{6}\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$
r.m.s. speed $=1.4 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9702	43

3 (a) acceleration/force proportional to displacement (from fixed point)
acceleration/force and displacement in opposite directions
A1
(b) maximum displacements/accelerations are different B1
graph is curved/not a straight line
B1
(c) (i) $\omega=2 \pi / T$ and $T=0.8 \mathrm{~s}$ C1

$$
\omega=7.9 \mathrm{rads}^{-1}
$$

A1
(ii) $a=(-) \omega^{2} x$

$$
=7.85^{2} \times 1.5 \times 10^{-2}
$$

$$
=0.93 \mathrm{~m} \mathrm{~s}^{-2} \text { or } 0.94 \mathrm{~m} \mathrm{~s}^{-2}
$$

(iii) $\Delta E=1 / 2 m \omega^{2}\left(x_{0}{ }^{2}-x^{2}\right) \quad$ C1
$=1 / 2 \times 120 \times 10^{-3} \times 7.85^{2} \times\left\{\left(1.5 \times 10^{-2}\right)^{2}-\left(0.9 \times 10^{-2}\right)^{2}\right\} \quad \mathrm{C} 1$
$=5.3 \times 10^{-4} \mathrm{~J}$

$$
=5.3 \times 10^{-4} \mathrm{~J}
$$

4 (a) (i) product of speed and density M1
(a) (i) product of speed and density M1 reference to speed in medium (and density of medium) A1
(ii) α : ratio of reflected intensity and/to incident intensity
Z_{1} and Z_{2} : (specific) acoustic impedances of media (on each side of boundary)
(b) in muscle: $I_{M}=I_{0} \mathrm{e}^{-\mu x}$

$$
\begin{equation*}
=I_{0} \exp \left(-23 \times 3.4 \times 10^{-2}\right) \tag{C1}
\end{equation*}
$$

$I_{\mathrm{M}} / I_{0}=0.457 \quad \mathrm{C} 1$

$$
\text { at boundary: } \alpha=(6.3-1.7)^{2} /(6.3+1.7)^{2}
$$

$$
\begin{equation*}
=0.33 \tag{C1}
\end{equation*}
$$

$I_{\mathrm{T}} / I_{\mathrm{M}}=[(1-\alpha)=] 0.67$

$$
I_{\mathrm{T}} / I_{0}=0.457 \times 0.67
$$

$$
=0.31
$$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9702	43

$5 \quad$ (a) (i) 1011
(ii)

0	0.25	0.50	0.75	1.00	1.25	1.50
1011	0110	1000	1110	0101	0011	0001

All 6 correct, 2 marks. 5 correct, 1 mark. A2
(b) sketch: 6 horizontal steps of width 0.25 ms shown M1
steps at correct heights and all steps shown A1
steps shown in correct time intervals
(c) increase sampling frequency/rate M1
so that step width/depth is reduced A1
increase number of bits (in each number) M1
so that step height is reduced A1
smooth curve through $\left(R, V_{\mathrm{S}}\right)$ and $\left(2 R, 0.5 V_{\mathrm{S}}\right) \quad \mathrm{B} 1$
smooth curve continues to $\left(3 R, 0.33 V_{\mathrm{s}}\right)$
(b) sketch: from $x=0$ to $x=R$, field strength is zero B1
smooth curve through (R, E) and $(2 R, 0.25 E) \quad$ B1
smooth curve continues to $(3 R, 0.11 E)$
charge is/should be proportional to potential (difference)
or
charge is/should be zero when p.d. is zero
(therefore there is a systematic error)

A1

A1
[4]

B1

B1

B1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9702	43

(b) reasonable attempt at line of best fit B1
use of gradient of line of best fit clear M1
$C=2800 \mu \mathrm{~F}$ (allow $\pm 200 \mu \mathrm{~F}$) A1
(c) energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $C=Q / V$ C1
Δ energy $=1 / 2 \times 2800 \times 10^{-6} \times\left(9.0^{2}-6.0^{2}\right)$

$$
=6.3 \times 10^{-2} \mathrm{~J}
$$

8 (a) op-amp has infinite/(very) large gain B1
op-amp saturates if $V^{+} \neq V^{-} \quad$ M1
V^{+}is at earth potential so $\mathrm{P}\left(\right.$ or $\left.V^{-}\right)$must be at earth A1
(b) input resistance to op-amp is very large
or
current in $R_{2}=$ current in R_{1}
$V_{\text {IN }}(-0)=I R_{2}$ and $(0)-V_{\text {OUT }}=I R_{1} \quad$ M1
$V_{\text {OUT }} / V_{\text {IN }}=-R_{1} / R_{2}$ A1
$\begin{array}{ll}\text { (c) relay coil connected between } V_{\text {OUT }} \text { and earth } & \text { M1 } \\ \text { correct diode symbol connected between } V_{\text {OUT }} \text { and coil or between coil and earth } & \text { M1 } \\ \text { correct polarity for diode ('clockwise') } & \text { A1 }\end{array}$

9 (a) 0.10 mm
(b) $V_{\mathrm{H}}=(0.13 \times 3.8) /\left(6.0 \times 10^{28} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19}\right)$ C1
$=5.1 \times 10^{-7} \mathrm{~V}$
A1
[2]

10 (a) (non-uniform) magnetic flux in core is changing M1
induces (different) e.m.f. in (different parts of) the core
(eddy) currents form in the core M1
which give rise to heating A1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9702	43

(b) as magnet falls, tube cuts magnetic flux M1
e.m.f./(eddy) currents induced in metal/aluminium (tube) A1
(eddy) current heating of tube M1
with energy taken from falling magnet A1
or
(eddy) currents produce magnetic field
that opposes motion of magnet
so magnet B has acceleration $<g$
or
magnet B has smaller acceleration/reaches terminal speed

11 (a) period $=15 \mathrm{~ms}$ C1
frequency $(=1 / T)=67 \mathrm{~Hz}$
(b) zero
(c) $I_{\text {r.m.s. }}=I_{0} / \sqrt{ } 2$

C1

$$
=0.53 \mathrm{~A}
$$

A1
(d) energy $=I_{\text {r.m.s. }}{ }^{2} \times R \times t$ or $1 / 2 I_{0}^{2} \times R \times t$
or
power $=I_{\text {r.m.s. }}{ }^{2} \times R \quad$ and \quad energy $=$ power $\times t$
energy $=0.53^{2} \times 450 \times 30 \times 10^{-3}$
$=3.8 \mathrm{~J}$
A1

12 (a) (in a solid electrons in) neighbouring atoms are close together
(and influence/interact with each other)
this changes their electron energy levels M1
(many atoms in lattice) cause a spread of energy levels into a band

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9702	43

(b) photons of light give energy to electrons in valence band B1
electrons move into the conduction band M1
leaving holes in the valence band A1
these electrons and holes are charge carriers B1
increased number/increased current, hence reduced resistance B1

13 (a) e.g. background count (rate)/radiation multiple possible counts from each decay radiation emitted in all directions dead-time of counter (daughter) product unstable/also emits radiation self-absorption of radiation in sample or absorption in air/detector window three sensible suggestions, 1 each
(b) $A=A_{0} \exp \left(-\ln 2 \times t / T_{1 / 2}\right)$
$1.21 \times 10^{2}=3.62 \times 10^{4} \exp \left(-\ln 2 \times 42.0 / T_{1 / 2}\right)$
or
$1.21 \times 10^{2}=3.62 \times 10^{4} \exp (-\lambda \times 42.0)$
C1
$T_{1 / 2}=5.1$ minutes (306 s)
(c) discrete energy levels (in nuclei)

