CAMBRIDGE

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the November 2003 question papers

	9702 PHYSICS
9702/01	Paper 1 (Multiple Choice (AS)), maximum mark 40
9702/02	Paper 2 (Structured Questions (AS)), maximum mark 60
9702/03	Paper 3 (Practical (AS)), maximum mark 25
9702/04	Paper 4 (Structured Questions (A2 Core)), maximum mark 60
9702/05	Paper 5 (Practical (A2)), maximum mark 30
9702/06	Paper 6 (Options (A2)), maximum mark 40

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/01

PHYSICS Paper 1 (Multiple Choice (AS))

Page 1		Mark Scheme		Syllabus	Paper
	A/AS LEVE	EXAMINATIONS -	NOVEMBER2003	9702	01
	Question Number	Кеу	Question Number	Key	
-	1	С	21	D	_
	2	С	22	С	
	3	Α	23	Α	
	4	D	24	D	
_	5	D	25	D	_
-					_
	6	В	26	Α	
	7	В	27	D	
	8	Α	28	В	
	9	C	29	В	
-	10	В	30	D	_
-	11	D	31	Α	_
	12	A	32	A	
	13	C	33	C	
	14	В	34	В	
	15	B	35	D	
-					_
_	16	С	36	В	
	17	D	37	D	
	18	В	38	С	
	19	В	39	В	
	20	Α	40	С	

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02

PHYSICS Paper 2 (Structured Questions (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	02

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

	Page 2		Mark Scheme	Syllabus	Paper
			A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	02
1	(a)	(i)	acceleration (allow a definition of acceleration)	B	1
		(ii)	the velocity is decreasing or force/acceleration is in n direction – accept 'body is decelerating'/'slowing dow	•	1 [2]
	(b)	(i)	e.g. separation of dots becomes constant/does not co increase (must make a reference to the diagram)		1
		(ii)′	distance = 132 cm	B	1
		(ii)2	(allow ± 1 cm) distance = 132 + (4 x 25)	C	
			= 232 cm	A	.1 [4]
	(c)		$s = ut + \frac{1}{2}at^{2}$ $1.6 = \frac{1}{2} \times 9.8 \times t^{2}$ (allow $g = 10 \text{ m s}^{-2}$ t = 0.57 s hence 6 photographs ('bald' answer scores 2 marks of	C	1
2	(a)		mass: measure of body's resistance/inertia to change velocity/motion weight: effect of gravitational field on mass or force of any further comment e.g. mass constant, weight varie	B f gravityB es/	1
	(1.)		weight = mg/scalar and vector	D	1 [3]
	(b)		e.g. where gravitational field strength changes (change) in fluid surrounding body <i>1 each, max</i> 2 .	B	2 [2]
3	(a)		force x perpendicular distance (of the force) from the pivot		
	(b)		no resultant force (in any direction) no resultant moment (about any point)		
	(c)	(i)	correct direction in both	B	1 [1]
		(ii)′	l moment = 150 x 0.3 = 45 N m (1 sig. fig1)	A	.1
		(ii)	2 torque = 45 N m i.e. same is (i)	A	.1
		(ii):	3 45 = 0.12 x T T = 375 N		
4	(a)	(i)1	amplitude = 0.4(0) mm	A	.1
		(i)2	wavelength = 7.5 x 10 ⁻² m (1 sig. fig1 unless already penalised)	A	.1
		(i)3	period = 0.225 ms frequency = 1/ <i>T</i> = 4400 Hz		
		(i)4	$v = f\lambda$ = 4400 x 7.5 x 10 ⁻² = 330 m s ⁻¹	C	1 1 [6]

	Page 3		Mark Scheme	Syllabus	Paper
			A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	02
	(a)	(ii)	reasonable shape, same amplitude and wavelength d	oubled B	1 [1]
	(b)	(i)	1.7(2) μm	A	1
		(ii)	d sin θ = $n\lambda$ (double slit formula scores 0/2) 1.72 x 10 ⁻⁶ x sin θ = 590 x 10 ⁻⁹ θ = 20.1° (allow 20°)		
		(iii)	½L = 1.5 tan20.1 L = 1.1 m		
5	(a)	(i)	arrow from B towards A	B	1
		(ii)	E = V/d = 450/(9.0 x 10 ⁻²) = 5.0 x 10 ³ N C ⁻¹ (accept 1 sig. fig)	C	1 1 [3]
	(b)	(i)	energy = qV or Eqd = 1.6 x 10 ⁻¹⁹ x 450 = 7.2 x 10 ⁻¹⁷ J	A	1
		(ii)	Ek = $\frac{1}{2}mv^2$ 7.2 x 10 ⁻¹⁷ = $\frac{1}{2}$ x 9.1 x 10 ⁻³¹ x v^2 v = 1.26 x 10 ⁷ m s ⁻¹	C	1 1 [4]
	(c)		line from origin, curved in correct direction but not 'lev	el out' B	1 [1]
6	(a)	(i)	26 protons	B	1
		(ii)	30 neutrons	B	1 [2]
	(b)	(i)	mass = 56 x 1.66 x 10^{-27} (allow x 1.67 x 10^{-27} but 0/2 for use of 26 or 30) = 9.3 x 10^{-26} kg		
		(ii)	density = mass/volume where volume = $4/3 \times \pi \times r^3$ = $(9.3 \times 10^{-26})/(4/3 \times \pi \times \{5.7 \times 10^{-15}\}^3)$ = $1.2 \times 10^{17} \text{ kg m}^{-3}$		
	(c)		nucleus occupies only very small fraction of <u>volume or</u> or 'lot of empty space inside atom' (do not allow spacing between atoms) any further good physics e.g. nuclear material is very	B	
7	(a)	(i)	P = Vi $1200 = 240 \times i$ i = 5.0 A	C M	1
		(ii)	V = iR 240 = 5.0 x R R = 48 Ω		
	(b)	(i)	p.d. = (5.0 x 4.0 =) 20 V	A	1
		(ii)	mains voltage = (240 + 20 =) 260 V	A	1
		(iii)	<i>P</i> = (20 x 5.0 =) 100 W	A	1 [3]
	(c)		power input = 1200 + 100 = 1300 W efficiency = 1200/1300 = 0.92		

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9702/03

PHYSICS Paper 3 (Practical (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9702	03
(c) (ii)	Percentage uncertainty in first value of <i>d</i> Uncertainty = 1 mm or 2 mm scores 1 mark. Ratio idea correct scores 1 mark.		2/1/0
(e) (i)	Readings 6 sets of values for d/T scores 1 mark. Check a value for <i>T</i> . Underline checked value. Tick if correct a Ignore rounding errors. If incorrect, write in correct value and d If there is no record of the number of oscillations then do not at If there are no raw times do not award this mark. If <i>t</i> for <i>T</i> then do not award this mark and ecf into the calculation Check a value for d/T . Underline this value. Tick if correct and Ignore rounding errors. If incorrect, write in correct value and do not award the mark. end Help given by Supervisor, then -1. Excessive help then -2. Misread stopwatch -1.	o not award ward this ma n for <i>d/T</i> . score 1 mar	the mark. ark.
(e) (i)	Repeated readings For each value of <i>d</i> there must be at least two values of <i>t</i> . Do not award this mark if all of the repeats are identical.		1
(e) (i)	Reasonable time used for oscillations At least half of the raw times must be greater than 20 s. If there are no raw times do not award this mark.		1
(e) (i)	Quality of results Judge by scatter of points about the line of best fit. 6 trend plots with little scatter scores 2 marks. 5 trend plots with little scatter scores 1 mark. Wrong trend of plots cannot score these marks (i.e. <i>t</i> increases	s as <i>d</i> increa	2/1/0 ses)
(e) (i)	Column headings Apply to <i>d</i> / <i>T</i> only.		1
(e) (i)	Consistency Apply to <i>d</i> only. All the values of <i>d</i> must be given to the neares	t millimetre.	1
(e) (i)	Significant figures Apply to d/T only. d/T must be given to the same number, or one more than, the significant figures as the least accurate data. Check each value		1
(e) (ii)	Justification for sf in d/T Answer must relate sf in d (and t) to sf in d/T . Do not allow answers in terms of decimal places. 'Raw data' ideas or reference to T instead of t can score 1/2 m	arks.	2/1/0
(f) (i)	Axes Scales must be such that the plotted points occupy at least hal both the x and y directions. Scales must be labelled with the qu Do not allow awkward scales (e.g. $3:10$, $6:10$, $7:10$ etc.). Ignore Do not allow large gaps in the scale (i.e. 4 large squares or mo	uantities plot e unit.	-
(f) (i)	Plotting of points Count the number of plots and write as a ringed number on the All observations must be plotted. There must be at least 5 plots Check a suspect plot. Circle and tick if correct. If incorrect, sho with arrow, and do not award the mark. Work to half a small so	s on the grid w correct pc	

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – NOVEMBER 2003	9702	03
(f) (i)	Line of best fit There must be a reasonable balance of points about the line of Only a straight line drawn through a linear trend is allowable.	f best fit.	1
(f) (ii)	Determination of gradient Δ used must be greater than half the length of the drawn line. $\Delta x/\Delta y$ scores zero. The value must be negative (if the line has Check the read-offs. Work to half a small square.	a negative g	1 radient).
(f) (ii)	<i>y</i> -intercept The value may be read directly or calculated using <i>y</i> = <i>mx</i> + <i>c</i> a	and a point c	1 on the line.
(g ₁)	Gradient equated with $-\pi^2/g$		1
(g ₂)	Value of g Accept 9.3 m s ⁻² < g < 10.3 m s ⁻² . This mark can only be scored if the gradient has been used.		1
(g₃)	Unit of <i>g</i> Must be consistent with the working.		1
(g ₄)	Intercept equated with <i>T</i> _O A numerical value is expected. Allow ecf from candidate's valu	e in (f) (ii) .	1
(g₅)	Unit of T _O		1
(h)	Suggested improvement; e.g. Measure the time for a greater number of oscillations: Use a th for the stop: Use a fiducial marker/projection on screen: Use ar timing method (e.g. light gates & timer/datalogger & motion ser Use larger values of <i>d</i> . Do not allow 'repeat readings', 'more see 'do the experiment in a vacuum', switch the fans off', 'use heav parallax error' or 'use a computer'.	n electronic nsor/laser & ensitive stop	timer) watch',

25 marks in total.

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/04

PHYSICS Paper 4 (Structured Questions (A2 Core))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	04

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

F	Page 2		Mark Scheme	Syllabus	Paper
			A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	04
1	(a)	(i)	radial lines pointing inwards		
		(ii)	no difference OR lines closer near surface of smaller sp	here B1	[3]
	(b)	(i)	$F_G = GMm/R^2.$ = (6.67 X 10 ⁻¹¹ x 5.98 x 10 ²⁴)/(6380 x 10 ³) ² = 9.80 N.	C1 A1	
		(ii)	$F_{c} = mR\omega^{2}$ $\omega = 2\pi/T$	C1	
		(iii)	<i>F</i> _{<i>G</i>} - <i>F</i> _{<i>C</i>} = 9.77 N	A1	[6]
	(c)		because acceleration (of free fall) is (resultant) force pe mass acceleration = 9.77 m s ⁻²	B1	[2]
2	(a)	(i)	<i>a</i> , ω and <i>x</i> identified(-1 each error or omission)	B2	
		(ii)	(-)ve because <i>a</i> and <i>x</i> in opposite directions OR <i>a</i> directed towards mean position/centre	B1	[3]
	(b)	(i)	forces in springs are $k(e + x)$ and $k(e - x)$ resultant = $k(e + x) - k(e - x)$ = $2kx$	M1	[2]
		(ii)	F = ma a = -2kx/m (-)ve sign explained	A0	[2]
		(iii)	$\omega^2 = 2k/m$ $(2\pi f)^2 = (2 \times 120)/0.90$ f = 2.6 Hz	C1	[3]
	(c)		atom held in position by attractive forces atom oscillates, not just two forces <i>OR</i> 3D not 1D force not proportional to <i>x</i>	50	101
3	(a)		any two relevant points, 1 each, max 2 pV/T = constant $T = (6.5 \times 10^6 \times 30 \times 300)/(1.1 \times 10^5 \times 540)$ = 985 K	C1 C1	[2]
3	(b)	(i)	(if uses °C, allow 1/3 marks for clear formula) $\Delta U = q + w$ symbols identified correctly directions correct	M1 A1	[2]
		(ii)	<i>q</i> is zero <i>w</i> is positive OR $\Delta U = w$ and <i>U</i> increases ΔU is rise in kinetic energy of <u>atoms</u> and mean kinetic energy $\propto T$ (allow one of the last two marks if states 'U increases so	B1 M1 A1	[4]

Pa	age 3		Mark Scheme	Syllabus	Paper
			A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	04
4	(a)		single diode in series with R <i>OR</i> in series with a.c. supply		[2]
	(b)	(i)1	5.4 V (allow \pm 0.1 V)	A1	
		(i)2	V = iR $I = 5.4/1.5 \times 10^{3} \dots$ $= 3.6 \times 10^{-3} A \dots$	C1 A1	
		(i)3	time = 0.027 s	A1	[4]
		(ii)1	Q = it = 3.6 x 10 ⁻³ x 0.027 = 9.72 x 10 ⁻⁵ C		
		(ii)2	$C = \Delta Q / \Delta V$ (allow C – Q/V for this mark) = (9.72 x 10 ⁻⁵)/1.2 = 8.1 x 10 ⁻⁵ F		[4]
	(c)		line: reasonable shape with less ripple		[1]
5			field producing force of 1.0 N m ⁻¹ on wire $OR B = F/IL$ sin carrying current of 1.0 A normal to field OR symbols exp	η <i>θ</i> Μ1	[2]
	(b)	(i)	$\phi = BA$ = 1.8 x 10 ⁻⁴ x 0.60 x 0.85 = 9.18 x 10 ⁻⁵ Wb		[2]
		(ii)1	$\Delta \phi = 9.18 \times 10^{-5} \text{ Wb}$	A1	
		(ii)2	$e = (N \Delta \phi) / \Delta t$ = (9.18 x 10 ⁻⁵)/0.20 = 4.59 x 10 ⁻⁴ V		[3]
		(iii)	there is an e.m.f. and a complete circuit OR no resultant e.m.f. from other three sides OR no e.m.f. in AB so yes	B1	[1]
6	(a)		packet/quantum of energy energy = <i>hf</i>		[2]
	(b)		e.g. threshold frequency outlined max. k.e. independent of intensity max. k.e. dependent on frequency (n.b. NOT proper photoelectric current depends on intensity instantaneous emission (1 each, max 3)		[3]
	(c)	(i)	photons have same energy so E_{max} unchanged intensity <i>OR</i> number of photons per unit time is halved, so $\frac{1}{2}n$ <i>OR n</i> reduced		
		(ii)	photons have higher energy so E_{max} increasesbut fewer photons per unit time so <i>n</i> decreases	B1	[4]

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 9702/05

PHYSICS Paper 5 (Practical (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	05

Question 1

(b)	Temperature of ice/water mixture (-1 to +2 $^{\circ}$ C; ignore unit and sf)	1
(d₁)	Readings 6 values of In <i>I</i> scores one mark. Allow more than 6 sets without penalty. Write the number of readings as a ringed total by the table. Choose a row in the table. Check a value for In(<i>II</i> A). Tick if correct and score one mark. If incorrect, write in correct value and do not award the mark. Ignore small rounding errors. No help from Supervisor scores one mark. Minor help zero. Major help –1. If help has been given then write SR at the top of the front page of the script, and give a brief explanation of the type of help that has been given by the table of results.	3/2/1/0
(d ₂)	Quality of results Judge by scatter of points about the line of best fit. 6 trend scores 2 marks; 5 trend scores one mark; no trend scores zero. Allow very shallow curve. If an incorrect graph has been plotted these marks cannot be awarded. Allow quality marks if the negative signs of ln <i>I</i> have been omitted.	2
(d ₃)	Column headings Each column heading must contain a quantity and a unit. There must be some distinguishing feature between the quantity and the unit. Ignore unit with column heading for In <i>I</i> .	1
(d ₄)	Consistency of raw readings All the raw readings of <i>V</i> should be given to the same number of d.p. All the raw readings of <i>I</i> should be given to the same number of d.p. One mark each. Do not allow 'added zeros'.	2
(e ₁)	Axes The axes must be labelled with ln <i>I</i> and <i>V</i> . Ignore units on the axes. The plotted points must occupy at least half the graph grid in both the <i>x</i> and <i>y</i> directions (i.e. 4 large squares in the <i>x</i> -direction and 6 large squares in the <i>y</i> -dir Do not allow more than 3 large squares between the labels on an axis. Do not allow awkward scales (e.g. $3:10$, $6:10$ etc.).	1 rection).

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	05

(e ₂)	Plotting of points All the observations must be plotted. Count the number of plots and ring this total on the grid. Do not allow plots in the margin area. Check one suspect plot. Circle this plot. Tick if correct. If incorrect, mark the correct position with a small cross and use an arrow to indicate where the plot should have been, and do not award the mark. Allow errors up to and including half a small square.	1
(e ₃)	Line of best fit Only a drawn straight line through a linear trend is allowable for this mark. This mark can only be awarded for 5 or more plots on the grid. There must be a reasonable balance of points about the drawn line. Do not allow a line of thickness greater than half a small square. Allow this mark if the trend of plots is a very shallow curve.	1
(e ₄)	Gradient Ignore any units given with the value. Hypotenuse of Δ must be > half the length of line drawn. Check the read-offs. Work to half a small square. $\Delta x / \Delta y$ gets zero. Values taken from the table that lie on the line to within half a small square are acceptable.	1
(e ₅)	<i>y</i> -intercept The value may be read from the <i>y</i> -axis or calculated from a point on the line using $y = mx + c$.	1
(f ₁)	<i>e/kT</i> = gradient Can be implied in the working.	1
(f ₂)	Value for <i>e</i> A numerical value is expected. Method of working must be correct. 1.6 x 10^{-19} C with no working scores zero. Gradient and kelvin must be used and the value of <i>e</i> must be x 10^{-19} or x 10^{-20} .	1
(f ₃)	Value for I _O Working must be checked (i.e. I _o = e ^{y-intercept})	1
(f ₄)	Units of both correct e and I_o (i.e. a unit of charge and a unit of current)	1
(f ₅)	SF in <i>e</i> Allow 2 of 3 sf only	1
(g)	Correct working to give <i>I</i> when $V = 1.0$ V and $T = 373$ K Method of working must be correct. Ignore unit and sf. Do not allow gradient value to be substituted.	1

20 marks in total.

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	05

Question 2

A1	Procedure OK (i.e. find $m_{\rm B}$ and acc ⁿ of A or B; <u>change</u> $m_{\rm B}$ and repeat). An experiment must have been described for this mark to be awarded. This mark can be scored even if the method is unworkable.	1
A2	Diagram of <u>workable</u> arrangement to find acceleration (e.g. object falls between two markers/light gates/smart pulley at top) If the diagram is not very detailed refer to text.	1
A3	Measurement of mass $m_{\rm B}$ (e.g. using balance/Newton meter/calibrations on masses)	1
B1	<u>Valid method</u> of measuring time Accept stopwatch; ticker-tape; light gates; motion sensors and dataloggers; smart pulley etc Unworkable methods will not score this mark .	1
B2	Correct measurements taken to find acceleration (e.g. measure a distance and <i>u</i> = 0 (if distance/time method used) spacing of successive dots on ticker-tape some detail of sampling rate if motion sensor/datalogger used)	1
B3	Use of results to calculate acceleration (e.g. substitute into $s = ut + \frac{1}{2}at^2$; $a = 25(x_2 - x_1)$ etc) If motion sensor used then acceleration obtained from monitor.	1
C1	 Any one safety precaution (e.g. Catch falling mass in bucket of sand Care needed to prevent mass B from coming over the top of the pulley Whiplash from breaking wires etc. Clamp retort stand to prevent it from falling over. Do not allow vague 'safety goggles'. Insist on a reason being given. 	1
D1/2/3	Any further good design features Some of these might be: Method of supporting the pulley Mention of friction in the pulley/oil pulley/smooth pulley Use large distance (to reduce percentage uncertainty) Limitations of stopwatch methods Vary <i>s</i> and measure <i>t</i> ; use graph to find <i>a</i> Repeat the experiment to find values of <i>a</i> for each value of <i>m</i> _B Some detail about the timing circuit (e.g. stop terminals on timer connected to double persented by switch and electromagnet).	3 ole

10 marks in total.

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/06

PHYSICS Paper 6 (Options (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Option A – Astrophysics and Cosmology

1	(a)		galaxy very distant light (reaching Earth) very faint light absorption in Earth's atmosphere (do not allow refraction) light pollution light scattered	[4]
	(b)		1 arc sec at 6.9 x 10^5 pc corresponds to 6.9 x 10^5 AU C1 1 ly = 6.3 (±0.3) x 10^4 AU or other valid conversion C1	
2	(a)		hence distance = 11 light-years	[3]
			entire sky would be equally bright A1	[3]
	(b)		shows infinite (static) Universe to be incorrect (allow back-credit to (a) for initial supposition	[2]
3	(a)	(i)	electromagnetic radiationB1 <i>either</i> characteristic of black body at 3 K <i>or</i> isotropicB1	[2]
		(ii)	finite age for Universe	[3]
	(b)		formation	
0	otion	F – The	Physics of Fluids	[3]
-			point where line of action of the upthrust or vertical line through	
4	(a)		centre of buoyancy meets centre line of ship	[2]
	(b)		(when submarine surfaces), water replaced by air <u>in tanks</u> B1 centre of mass <u>and</u> centre of buoyancy will moveM1 causing change in separation of these points	[3]
5	(a)		(Bernoulli:) higher speed, lower pressureM1 so A at higher pressureA1	[2]
	(b)		$Av = A_N v_N$ or statement (e.g. incompressible)	[2]
	(c)		$p_1 - p_2 = \Delta p = \frac{1}{2} p(v_2^2 = v_1^2)$ C1 740 = $\frac{1}{2} \times 990 \times (81v^2 - v^2)$ C1 $v = 0.14 \text{ m s}^{-1}$ A1	[3]
6	(a)	(i)	v = 0.14 m/s A1 upthrust = 4/3 x $\pi r^3 \rho_F g$	[3]
J	(a)			
		(ii)	resultant downward force = $4/3 \times \pi r^3 (\rho_S - \rho_F)g$ or $4/3 \times \pi r^3 (\rho_S - \rho_F)g - viscous force B1$	[2]

Page 3	3	Mark Scheme	Syllabus	Paper
1 490 4		A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06
(b)	(i)	$6\pi r\eta v_t = 4/3 \ge \pi r^3 (\rho_S - \rho_F)g.$ hence, $v_t = kr^2$ constant <i>k</i> discussed e.g. find speed near 'top' and near 'bottom' of tube	A0 A1	[2]
(c)	(i) (ii)	oil flowing past wall of tube	A1	
	()	would cause extra drag		[4]
Option	M – M	edical Physics		
7		large uniform magnetic field with superimposed non-uniform field r.f. pulse applied r.f. pulse (from atoms) detected and processed <i>plus any two (one each) from</i> hydrogen atoms nuclei have spin and behave as tiny magnets atoms precess around magnetic field resonant (Lamour) frequency depends on B-field de-excitation detected	B1 B1	
- / .		r.f. pulse detected and processed		[6]
8 (a)	(i)	1/u + 1/v = 1/f = power. power = 1/0.10 + 1/(17 x 10 ⁻³) power = 68.8 D	C1	
	(ii)	least distance of distinct vision = 25 cm (allow 20 cm \rightarrow 5 power = 1/0.25 + 1/(17 x 10 ⁻³) power = 62.8 D	·	[5]
(b)	(i)	change = 6.0 D N.b. answer is (i) – (ii)	B1	
	(ii)	focal length = 16.7 cm convex/converging lens		[3]
9 (a)	(i)	lower limit of frequency range correct (15 to 40 Hz) upper limit of frequency range correct (13 to 20 kHz)		
	(ii)	intensity 1.0 x 10^{-12} W m ⁻² at about 2 kHz (allow 1 kHz \rightarrow 3 kHz)		[4]
(b)		line 'above' that already drawn both frequency limits showing more limited range		[2]

D	h and			Mark Scheme	Syllabus	Paper
	age 4		A/AS LEV	EL EXAMINATIONS - JUNE 2003	9702	Paper 06
		·				
Ор	tion F	P – En	vironmental Phy	ysics		
10	(a)		source of (use	ful) energy	B1	[1]
	(b)		e.g. less polluti	ion		
	. ,		finite reser		Do	101
			chemical fo	eedstock etc(1 each, max 3)	ВЗ	[3]
11	(a)			er mouth/estuary		
				as tide goes out ter is released		
				2S		[4]
	(h)		mana of water	$-8.0\times 200\times 10^{6}\times 1000$ kg	C1	
	(b)			= $8.0 \times 200 \times 10^6 \times 1000 \text{ kg}$		
			- .	$= 6.27 \times 10^{13} \text{ J}$	C1	
			power = 6.27 >	< 10 ¹³ /(3 x 3600) 10 ⁹ W		[0]
			= 5.8 X	10° W	A1	[3]
	(c)		e.g. silting up			
			feeding gro	ounds of birds etc(1 each, max 2)	B2	[2]
12	(a)		open	closed		
			closed	closed		
			closed closed	closed open(-1 each error or omis	sion) B2	[2]
			closed		SiON) DZ	[2]
	(b)	(i)	at end of comp	pression stroke or at beginning of power	stroke B1	
		(ii)		en exhaust valve opens		[2]
			(and during) es	khaust stroke	DI	[3]
	(c)		-	with air or increase surface area		
			faster burning		В1	[2]
Op	tion 1	ſ – Tel	ecommunicatio	ons		
13	(a)		multiple reflecti	ions with <i>i</i> = <i>r</i>	B1	[1]
-						
	(b)			e same path length/prevent (multipath) dis core/handle		[1]
	(c)			andwidth talk or reduced noise ize and weight		
			security	digital transmission (1 each, max 3)A3	[3]
14	(a)			arrier wave varies ith (displacement of information) signal		[2]
	(b)		three vertical li	nes	B1	
	. /		symmetrical wi	th smaller sidebands	B1	
			at frequencies	70, 75 and 80 kHz	B1	[3]

Pa	age 5		Mark Scheme	Syllabus	Paper
			A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06
	(c)		bandwidth = 10 kHz	B1	
15	(a)	(i)	loss of power/energy/amplitude (not signal)	B1	
		(ii)	unwanted energy/power that is random or that covers whole spectrum		[3]
	(b)		number of dB = 10 lg(P_{OUT}/P_{IN}) 63 = 10 lg (P_{OUT} /(2.5 x 10 ⁻⁶) P_{OUT} = 5.0 W	C1	[3]
	(c)		attenuation = 10 lg(5/3.5 x 10 ⁻⁸) = 81.5 dB length = 81.5/12 = 6.8 km	C1	[3]