CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the November 2003 question papers

9702 PHYSICS

9702/01
Paper 1 (Multiple Choice (AS)), maximum mark 40
9702/02
Paper 2 (Structured Questions (AS)), maximum mark 60
9702/03 Paper 3 (Practical (AS)), maximum mark 25
9702/04 Paper 4 (Structured Questions (A2 Core)), maximum mark 60
9702/05 Paper 5 (Practical (A2)), maximum mark 30
9702/06 Paper 6 (Options (A2)), maximum mark 40

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/01

PHYSICS
Paper 1 (Multiple Choice (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER2003	9702	01

Question Number	Key	Question Number	Key
1	C	21	D
2	C	22	C
3	A	23	A
4	D	24	D
5	D	25	D
6	B	26	A
7	B	27	D
8	A	28	B
9	C	29	B
10	B	30	D
11	D	31	A
12	A	32	A
13	C	33	C
14	B	34	B
15	B	35	D
16	C	36	B
17	D	37	D
18	B	38	C
19	B	39	B
20	A	40	C

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02
 PHYSICS
 Paper 2 (Structured Questions (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	02

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a Bmark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C -mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	02

1 (a) (i) acceleration (allow a definition of acceleration) B1
(ii) the velocity is decreasing or force/acceleration is in negative direction - accept 'body is decelerating'/'slowing down' B1
(b) (i) e.g. separation of dots becomes constant/does not continue to increase (must make a reference to the diagram) B1
(ii)1 distance = 132 cm B1
(ii)2 at constant speed, distance travelled in $0.1 \mathrm{~s}=25 \mathrm{~cm}$ (allow $\pm 1 \mathrm{~cm}$) C1
distance $=132+(4 \times 25)$
$=232 \mathrm{~cm}$ A1
(c) $\quad s=u t+1 / 2 a t^{2}$
$1.6=1 / 2 \times 9.8 \times$ t 2 (allow $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ C1
$t=0.57 \mathrm{~s}$ C1
hence 6 photographs ('bald' answer scores 2 marks only) A1
2 (a) mass: measure of body's resistance/inertia to changes in velocity/motion B1
weight: effect of gravitational field on mass or force of gravity B1
any further comment e.g. mass constant, weight varies/ weight $=\mathrm{mg} /$ scalar and vector B1
(b) e.g. where gravitational field strength changes (change) in fluid surrounding body.... 1 each, max 2 B2
3 (a) force x perpendicular distance M1
(of the force) from the pivot A1
(b) no resultant force (in any direction) B1
no resultant moment (about any point) B1
(c) (i) correct direction in both B1
(ii) moment $=150 \times 0.3=45 \mathrm{Nm}(1$ sig. fig. -1$)$ A1
(ii)2 torque $=45 \mathrm{~N}$ m i.e. same is (i) A1
(ii)3 $45=0.12 \times T$ C1
$T=375 \mathrm{~N}$ A1
4 (a) (i)1 amplitude $=0.4(0) \mathrm{mm}$ A1
(i)2 wavelength $=7.5 \times 10^{-2} \mathrm{~m}$
(1 sig. fig. -1 unless already penalised) A1
(i)3 period $=0.225 \mathrm{~ms}$ C1
frequency $=1 / T=4400 \mathrm{~Hz}$ A1
(i)4
$v=f \lambda$
$v=f \lambda$ $=4400 \times 7.5 \times 10^{-2}$ C1
$=330 \mathrm{~m} \mathrm{~s}^{-1}$ A1

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	02

(a) (ii) reasonable shape, same amplitude and wavelength doubled B1
(b) (i) $1.7(2) \mu \mathrm{m}$ A1
(ii) $\mathrm{d} \sin \theta=n \lambda$ (double slit formula scores $0 / 2$) $1.72 \times 10^{-6} \times \sin \theta=590 \times 10^{-9}$ C1
$\theta=20.1^{\circ}$ (allow 20°) A1
(iii) $\quad 1 / 2 L=1.5 \tan 20.1$ C1
$\mathrm{L}=1.1 \mathrm{~m}$ A1
5 (a) (i) arrow from B towards A B1
(ii) $E=V / d$
(b) (i) energy $=q V$ or Eqd C1
$=1.6 \times 10^{-19} \times 450$ A1
$=7.2 \times 10^{-17} \mathrm{~J}$
$=7.2 \times 10^{-17} \mathrm{~J}$ A0 A0
(ii) $E k=1 / 2 m v^{2}$
$7.2 \times 10^{-17}=1 / 2 \times 9.1 \times 10^{-31} \times v^{2}$ C1
$v=1.26 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ A1
(c) line from origin, curved in correct direction but not 'level out' B1
6 (a) (i) 26 protons B1
(ii) 30 neutrons B1
(b) (i) mass $=56 \times 1.66 \times 10^{-27}$ C1
(allow $\times 1.67 \times 10^{-27}$ but $0 / 2$ for use of 26 or 30) $=9.3 \times 10^{-26} \mathrm{~kg}$ A1
(ii) density $=$ mass/volume where volume $=4 / 3 \times \pi \times r^{3}$ C1
$=\left(9.3 \times 10^{-26}\right) /\left(4 / 3 \times \pi \times\left\{5.7 \times 10^{-15}\right\}^{3}\right)$
$=1.2 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$ A1
(c) nucleus occupies only very small fraction of volume of atom or 'lot of empty space inside atom' B1
(do not allow spacing between atoms)
any further good physics e.g. nuclear material is very dense B1
7 (a) (i) $\quad P=V i$ C1
$1200=240 \times i$ M1
$i=5.0 \mathrm{~A}$ A0
(ii) $\quad V=i R$
$240=5.0 \times R$ C1
$R=48 \Omega$ A1
(b) (i) p.d. $=(5.0 \times 4.0=) 20 \mathrm{~V}$ A1
(ii) mains voltage $=(240+20=) 260 \mathrm{~V}$ A1
(iii) $P=(20 \times 5.0=) 100 \mathrm{~W}$ A1
(c) power input $=1200+100=1300 \mathrm{~W}$ C1
efficiency $=1200 / 1300=0.92$ A1

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9702/03

PHYSICS
Paper 3 (Practical (AS))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	03

(c) (ii) Percentage uncertainty in first value of d

Uncertainty $=1 \mathrm{~mm}$ or 2 mm scores 1 mark.
Ratio idea correct scores 1 mark.
(e) (i) Readings

6 sets of values for d / T scores 1 mark.
Check a value for T. Underline checked value. Tick if correct and score 1 mark. Ignore rounding errors. If incorrect, write in correct value and do not award the mark. If there is no record of the number of oscillations then do not award this mark. If there are no raw times do not award this mark.
If t for T then do not award this mark and ecf into the calculation for d / T.
Check a value for d / T. Underline this value. Tick if correct and score 1 mark. Ignore rounding errors.
If incorrect, write in correct value and do not award the mark. ecf for T.
Help given by Supervisor, then -1. Excessive help then -2.
Misread stopwatch -1 .
(e) (i) Repeated readings

For each value of d there must be at least two values of t.
Do not award this mark if all of the repeats are identical.
(e) (i) Reasonable time used for oscillations

At least half of the raw times must be greater than 20 s .
If there are no raw times do not award this mark.
(e) (i) Quality of results

Judge by scatter of points about the line of best fit.
6 trend plots with little scatter scores 2 marks.
5 trend plots with little scatter scores 1 mark.
Wrong trend of plots cannot score these marks (i.e. t increases as d increases)
(e) (i) Column headings

Apply to d / T only.
(e) (i) Consistency

Apply to d only. All the values of d must be given to the nearest millimetre.
(e) (i) Significant figures

Apply to d / T only.
d / T must be given to the same number, or one more than, the number of significant figures as the least accurate data. Check each value by row.
(e) (ii) Justification for sf in d / T

Answer must relate sf in d (and t) to sf in d / T.
Do not allow answers in terms of decimal places.
'Raw data' ideas or reference to T instead of t can score $1 / 2$ marks.
(f) (i) Axes
Scales must be such that the plotted points occupy at least half the graph grid in
both the x and y directions. Scales must be labelled with the quantities plotted.
Do not allow awkward scales (e.g. 3:10. $6: 10,7: 10$ etc.). Ignore unit.
Do not allow large gaps in the scale (i.e. 4 large squares or more).
(f) (i) Plotting of points

Count the number of plots and write as a ringed number on the grid.
All observations must be plotted. There must be at least 5 plots on the grid.
Check a suspect plot. Circle and tick if correct. If incorrect, show correct position with arrow, and do not award the mark. Work to half a small square.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	03

(f) (i) Line of best fit

There must be a reasonable balance of points about the line of best fit.
Only a straight line drawn through a linear trend is allowable.
(f) (ii) Determination of gradient
Δ used must be greater than half the length of the drawn line.
$\Delta x / \Delta y$ scores zero. The value must be negative (if the line has a negative gradient). Check the read-offs. Work to half a small square.
(f) (ii) y-intercept

The value may be read directly or calculated using $y=m x+c$ and a point on the line.
$\left.\mathbf{(g}_{1}\right) \quad$ Gradient equated with $-\pi^{2} / g$
$\left(\mathbf{g}_{2}\right) \quad$ Value of g
Accept $9.3 \mathrm{~m} \mathrm{~s}^{-2}<\mathrm{g}<10.3 \mathrm{~m} \mathrm{~s}^{-2}$.
This mark can only be scored if the gradient has been used.
$\begin{array}{ll}\left(\mathbf{g}_{3}\right) \quad & \text { Unit of } g \\ & \text { Must be consistent with the working. }\end{array}$
$\left.\mathbf{(g}_{4}\right) \quad$ Intercept equated with T_{0}
A numerical value is expected. Allow ecf from candidate's value in (f) (ii).
($\left.\mathbf{g}_{5}\right) \quad$ Unit of T_{O}
(h) Suggested improvement; e.g. 1

Measure the time for a greater number of oscillations: Use a thinner rod/knife edge for the stop: Use a fiducial marker/projection on screen: Use an electronic timing method (e.g. light gates \& timer/datalogger \& motion sensor/laser \& timer) Use larger values of d. Do not allow 'repeat readings', 'more sensitive stopwatch', 'do the experiment in a vacuum', switch the fans off', 'use heavier bob', 'avoid parallax error' or 'use a computer'.

25 marks in total.

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/04
 PHYSICS Paper 4 (Structured Questions (A2 Core))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	04

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an \mathbf{M}-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	04

1 (a) (i) radial lines B1
pointing inwards B1
(ii) no difference OR lines closer near surface of smaller sphere B1
(b) (i) $\quad F_{G}=G M m / R^{2}$ C1
$=\left(6.67 \times 10^{-11} \times 5.98 \times 10^{24}\right) /\left(6380 \times 10^{3}\right)^{2}$ $=9.80 \mathrm{~N}$ A1
(ii) $F_{C}=m R \omega^{2}$ C1
$\omega=2 \pi / T$ C1
$\left.F_{C}=\left(4 \pi^{2} \times 6380 \times 10^{3}\right) / 8.64 \times 10^{4}\right)^{2}$
$=0.0337 \mathrm{~N}$ A1
(iii) $F_{G}-F_{C}=9.77 \mathrm{~N}$ A1
(c) because acceleration (of free fall) is (resultant) force per unit mass B1
acceleration $=9.77 \mathrm{~m} \mathrm{~s}^{-2}$ B1
2 (a) (i) a, ω and x identified(-1 each error or omission) B2
(ii) (-)ve because a and x in opposite directions OR a directed towards mean position/centre B1
(b) (i) forces in springs are $k(e+x)$ and $k(e-x)$ C1
resultant $=k(e+x)-k(e-x)$ M1
$=2 k x$ A0
(ii) $F=m a$ B1
$a=-2 k x / m$ A0
(-)ve sign explained B1
(iii) $\omega^{2}=2 k / m$ C1
$(2 \pi f)^{2}=(2 \times 120) / 0.90$ C1
$f=2.6 \mathrm{~Hz}$ A1
(c) atom held in position by attractive forces atom oscillates, not just two forces OR 3D not 1D
force not proportional to x
any two relevant points, 1 each, max 2 B2
3 (a) $\quad p V / T=$ constant C1
$T=\left(6.5 \times 10^{6} \times 30 \times 300\right) /\left(1.1 \times 10^{5} \times 540\right)$ C1
$=985 \mathrm{~K}$ A1
(if uses ${ }^{\circ} \mathrm{C}$, allow $1 / 3$ marks for clear formula)
3 (b) (i) $\Delta U=q+w$
symbols identified correctly M1
directions correct A1
(ii) q is zero B1
w is positive OR $\Delta U=w$ and U increases B1
ΔU is rise in kinetic energy of atoms M1
and mean kinetic energy $\propto T$ A1
(allow one of the last two marks if states ' U increases so T rises')

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	04

4 (a) single diode M1
in series with $\mathrm{R} O R$ in series with a.c. supply A1
(b) (i)1 5.4 V (allow $\pm 0.1 \mathrm{~V}$) A1
(i)2 $\quad V=i R$
$I=5.4 / 1.5 \times 10^{3}$ C1
$=3.6 \times 10^{-3} \mathrm{~A}$ A1
(i) 3 time $=0.027 \mathrm{~s}$ A1
(ii) $\quad Q=i t$
$=3.6 \times 10^{-3} \times 0.027$ C1
$=9.72 \times 10^{-5} \mathrm{C}$ A1

(ii)2 $C=\Delta Q / \Delta V$ (allow $C-Q / V$ for this mark)

(ii)2 $C=\Delta Q / \Delta V$ (allow $C-Q / V$ for this mark) C1 C1

$$
=8.1 \times 10^{-5} \mathrm{~F}
$$

$=\left(9.72 \times 10^{-5}\right) / 1.2$
$=\left(9.72 \times 10^{-5}\right) / 1.2$ A1 A1
(c) line: reasonable shape with less ripple B1
5 (a) field producing force of $1.0 \mathrm{~N} \mathrm{~m}^{-1}$ on wire $O R B=F / / L \sin \theta$. M1
carrying current of 1.0 A normal to field $O R$ symbols explained ... A1 A1 A1
(b) (i) $\phi=B A$
$=1.8 \times 10^{-4} \times 0.60 \times 0.85$ C1
$=9.18 \times 10^{-5} \mathrm{~Wb}$ A1
(ii)1 $\Delta \phi=9.18 \times 10^{-5} \mathrm{~Wb}$. A1
(ii)2 $e=(N \Delta \phi) / \Delta t$

$$
=\left(9.18 \times 10^{-5}\right) / 0.20
$$ C1 A1

(II) $O R$ no resultant e.m.f. from other three sides $O R$ no e.m.f. in AB so yes B1
6 (a) packet/quantum of energy M1
A1packet/quantum of energy..
energy $=h f$.......
$=4.59 \times 10^{-4} \mathrm{~V}$
$=4.59 \times 10^{-4} \mathrm{~V}$
(iii) there is an e.m.f. and a complete circuit
(iii) there is an e.m.f. and a complete circuit

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

MARK SCHEME
MAXIMUM MARK: 30
SYLLABUS/COMPONENT: 9702/05
PHYSICS
Paper 5 (Practical (A2))

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	05

Question 1

(b) Temperature of ice/water mixture (-1 to $+2^{\circ} \mathrm{C}$; ignore unit and sf)
(d_{1}) Readings
6 values of In / scores one mark.
Allow more than 6 sets without penalty.
Write the number of readings as a ringed total by the table.
Choose a row in the table.
Check a value for $\ln (I / A)$. Tick if correct and score one mark. If incorrect, write in correct value and do not award the mark. Ignore small rounding errors.
No help from Supervisor scores one mark. Minor help zero. Major help -1. If help has been given then write SR at the top of the front page of the script, and give a brief explanation of the type of help that has been given by the table of results.
(d_{2}) Quality of results
Judge by scatter of points about the line of best fit.
6 trend scores 2 marks; 5 trend scores one mark; no trend scores zero.
Allow very shallow curve.
If an incorrect graph has been plotted these marks cannot be awarded.
Allow quality marks if the negative signs of In / have been omitted.
$\left(d_{3}\right) \quad$ Column headings
Each column heading must contain a quantity and a unit.
There must be some distinguishing feature between the quantity and the unit. Ignore unit with column heading for In I.
(\mathbf{d}_{4}) Consistency of raw readings
All the raw readings of V should be given to the same number of d.p.
All the raw readings of $/$ should be given to the same number of d.p.
One mark each. Do not allow 'added zeros'.
(e_{1}) Axes
The axes must be labelled with In I and V. Ignore units on the axes.
The plotted points must occupy at least half the graph grid in both the x and y directions (i.e. 4 large squares in the x-direction and 6 large squares in the y-direction). Do not allow more than 3 large squares between the labels on an axis.
Do not allow awkward scales (e.g. 3:10, 6:10 etc.).

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	05

(\mathbf{e}_{2}) Plotting of points
All the observations must be plotted.
Count the number of plots and ring this total on the grid.
Do not allow plots in the margin area.
Check one suspect plot. Circle this plot. Tick if correct. If incorrect, mark the correct position with a small cross and use an arrow to indicate where the plot should have been, and do not award the mark. Allow errors up to and including half a small square.
(\mathbf{e}_{3}) Line of best fit
Only a drawn straight line through a linear trend is allowable for this mark.
This mark can only be awarded for 5 or more plots on the grid.
There must be a reasonable balance of points about the drawn line.
Do not allow a line of thickness greater than half a small square.
Allow this mark if the trend of plots is a very shallow curve.
(\mathbf{e}_{4}) Gradient
Ignore any units given with the value.
Hypotenuse of Δ must be $>$ half the length of line drawn.
Check the read-offs. Work to half a small square. $\Delta x / \Delta y$ gets zero.
Values taken from the table that lie on the line to within half a small square are acceptable.
(\mathbf{e}_{5}) $\quad y$-intercept
The value may be read from the y-axis or calculated from a point on the line using $y=m x+c$.
(f_{1}) $\quad e / k T=$ gradient
Can be implied in the working.
(f_{2}) Value for e
A numerical value is expected. Method of working must be correct.
$1.6 \times 10^{-19} \mathrm{C}$ with no working scores zero.
Gradient and kelvin must be used and the value of e must be $\ldots \times 10^{-19}$ or $\ldots \times 10^{-20}$.
(f_{3}) Value for I_{0}
Working must be checked (i.e. $I_{0}=e^{y \text {-intercept }}$)
(f_{4}) Units of both correct e and I_{0}
(i.e. a unit of charge and a unit of current)
(f5) $\quad \mathrm{SF}$ in e
Allow 2 of 3 sf only
(g) Correct working to give / when $V=1.0 \mathrm{~V}$ and $T=373 \mathrm{~K}$

Method of working must be correct. Ignore unit and sf.
Do not allow gradient value to be substituted.

20 marks in total.

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - NOVEMBER 2003	9702	05

Question 2

A1 Procedure OK (i.e. find m_{B} and $\mathrm{acc}{ }^{\mathrm{n}}$ of A or B ; change m_{B} and repeat).
An experiment must have been described for this mark to be awarded.
This mark can be scored even if the method is unworkable.
A2 Diagram of workable arrangement to find acceleration
(e.g. object falls between two markers/light gates/smart pulley at top) If the diagram is not very detailed refer to text.

A3 Measurement of mass m_{B} (e.g. using balance/Newton meter/calibrations on masses)
B1 Valid method of measuring time
Accept stopwatch; ticker-tape; light gates; motion sensors and dataloggers; smart pulley etc..
Unworkable methods will not score this mark.
B2 Correct measurements taken to find acceleration
(e.g. measure a distance and $u=0$ (if distance/time method used)
spacing of successive dots on ticker-tape some detail of sampling rate if motion sensor/datalogger used)

B3 Use of results to calculate acceleration
(e.g. substitute into $s=u t+1 / 2 t^{2} ; a=25\left(x_{2}-x_{1}\right)$ etc..)

If motion sensor used then acceleration obtained from monitor.
C1 Any one safety precaution
(e.g. Catch falling mass in bucket of sand

Care needed to prevent mass B from coming over the top of the pulley Whiplash from breaking wires etc.
Clamp retort stand to prevent it from falling over.
Do not allow vague 'safety goggles'. Insist on a reason being given.
D1/2/3 Any further good design features
Some of these might be:
Method of supporting the pulley
Mention of friction in the pulley/oil pulley/smooth pulley
Use large distance (to reduce percentage uncertainty)
Limitations of stopwatch methods
Vary s and measure t; use graph to find a
Repeat the experiment to find values of a for each value of m_{B}
Some detail about the timing circuit (e.g. stop terminals on timer connected to double pole switch and electromagnet).

10 marks in total.

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

November 2003

GCE ADVANCED SUBSIDIARY LEVEL AND ADVANCED LEVEL

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a Bmark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Option A - Astrophysics and Cosmology

1 (a) galaxy very distant light (reaching Earth) very faint light absorption in Earth's atmosphere (do not allow refraction) light pollution light scattered (1 each, any 4) B4
(b) $\quad 1$ arc sec at $6.9 \times 10^{5} \mathrm{pc}$ corresponds to $6.9 \times 10^{5} \mathrm{AU}$ C1
$1 \mathrm{ly}=6.3(\pm 0.3) \times 10^{4} \mathrm{AU}$ or other valid conversion C1
hence distance $=11$ light-years A1
2 (a) If Universe is (static and) infinite B1
every line of sight would end on a star M1
entire sky would be equally bright A1
(b) shows infinite (static) Universe to be incorrect (allow back-credit to (a) for initial supposition B1
does not 'prove' Big Bang model B1
3 (a) (i) electromagnetic radiation B1
either characteristic of black body at 3 K or isotropic B1
(ii) finite age for Universe B1
indicated by cooling Universe B1
any further detail e.g. irregularities required for galaxy formation B1
(b) radiation takes millions of years to reach Earth B1
provides evidence for higher temperature in the past. B1
(Universe is cooling) as it expands B1
Option F - The Physics of Fluids
4 (a) point where line of action of the upthrust or vertical line through centre of buoyancy meets centre line of ship B1
(b) (when submarine surfaces), water replaced by air in tanks B1
centre of mass and centre of buoyancy will move M1
causing change in separation of these points A1
5 (a) (Bernoulli:) higher speed, lower pressure M1
so A at higher pressure A1
(b) $\quad A v=A_{N} v_{N}$ or statement (e.g. incompressible) B1

$v_{N} / v\left(=A / A_{N}\right)=2.4^{2} / 0.8^{2}$ or other correct substitution

$v_{N} / v\left(=A / A_{N}\right)=2.4^{2} / 0.8^{2}$ or other correct substitution B1 B1
$v_{N} / v(=A / A$
ratio $=9.0$
$v_{N} / v(=A / A$
ratio $=9.0$ A0 A0
(c) $p_{1}-p_{2}=\Delta p=1 / 2 p\left(v_{2}^{2}=v_{1}^{2}\right)$ C1
$740=1 / 2 \times 990 \times\left(81 v^{2}-v^{2}\right)$ C1
$v=0.14 \mathrm{~m} \mathrm{~s}^{-1}$ A1
6 (a) (i) upthrust $=4 / 3 \times \pi r^{3} \rho_{F} g$ B1
(ii) resultant downward force $=4 / 3 \times \pi r^{3}\left(\rho_{S}-\rho_{F}\right) g$

$$
\text { or } 4 / 3 \times \pi r^{3}\left(\rho_{S}-\rho_{F}\right) g \text { - viscous force..... B1 }
$$

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

(b) $\quad 6 \pi r \eta v_{\mathrm{t}}=4 / 3 \times \pi r^{3}\left(\rho_{S}-\rho_{F}\right) g$. M1
hence, $v_{\mathrm{t}}=k r^{2}$ A0
constant k discussed A1
(c) (i) e.g. find speed near 'top' and near 'bottom' of tube M1
using equally spaced markers (or other detail) A1
(ii) oil flowing past wall of tube B1
would cause extra drag B1
Option M - Medical Physics
7 large uniform magnetic field B1
with superimposed non-uniform field. B1
r.f. pulse applied B1
r.f. pulse (from atoms) detected and processed B1
plus any two (one each) fromhydrogen atoms
nuclei have spin and behave as tiny magnets
atoms precess around magnetic field
resonant (Lamour) frequency depends on B-fieldde-excitation detectedr.f. pulse detected and processedB1
8 (a) (i) $1 / u+1 / v=1 / f=$ power. C1
power $=1 / 0.10+1 /\left(17 \times 10^{-3}\right)$ C1
power $=68.8 \mathrm{D}$ A1
(ii) least distance of distinct vision $=25 \mathrm{~cm}$ (allow $20 \mathrm{~cm} \rightarrow 50 \mathrm{~cm}$).. C power $=1 / 0.25+1 /\left(17 \times 10^{-3}\right)$
power $=62.8 \mathrm{D}$ A1
(b) (i) change = 6.0 D N.b. answer is (i) - (ii) B1
(ii) focal length $=16.7 \mathrm{~cm}$. B1
convex/converging lens B1
9 (a) (i) lower limit of frequency range correct (15 to 40 Hz) B1
upper limit of frequency range correct (13 to 20 kHz) B1
(ii) intensity $1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$ B1
at about 2 kHz (allow $1 \mathrm{kHz} \rightarrow 3 \mathrm{kHz}$) B1
(b) line 'above' that already drawn B1
both frequency limits showing more limited range. B1

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9702	06

Option P - Environmental Physics

10 (a) source of (useful) energy ... B1
(b) e.g. less pollution finite reserves chemical feedstock etc(1 each, max 3) B3

11 (a) dam across river mouth/estuary.. B1
water retained as tide goes out.. B1
at low tide, water is released.. B1
through turbines... .. B1

$\begin{aligned} \text { change in p.e } & =1.6 \times 10^{12} \times 9.8 \times 4 \\ & =6.27 \times 10^{13} \mathrm{~J} . ~ C 1 ~\end{aligned}$
$\begin{aligned} \text { power } & =6.27 \times 10^{13} /(3 \times 3600) \\ & =5.8 \times 10^{9} \mathrm{~W} . \ldots \ldots . ~ A 1 ~\end{aligned}$
(c) e.g. silting up
feeding grounds of birds etc(1 each, max 2). B2

12 (a) \begin{tabular}{ll}
open

closed

closed

closed

\quad

closed

closed

closed

open...............(-1 each error or omission)......... B2
\end{tabular}

(b) (i) at end of compression stroke or at beginning of power stroke B1
(ii) at moment when exhaust valve opens B1
(and during) exhaust stroke B1
(c) efficient mixing with air or increase surface area. B1
faster burning B1
Option T - Telecommunications
13 (a) multiple reflections with $i=r$ B1
(b) all rays to have same path length/prevent (multipath) dispersion OR easier to store/handle B1
(c) e.g. greater bandwidth
no cross-talk or reduced noise smaller size and weight cheaper security suited to digital transmission (1 each, max 3) A3
14 (a) amplitude of carrier wave varies. M1
in synchrony with (displacement of information) signal A1
(b) three vertical lines B1
symmetrical with smaller sidebands B1
at frequencies 70,75 and 80 kHz B1
Page 5
(c) bandwidth $=10 \mathrm{kHz}$ B1
15 (a) (i) loss of power/energy/amplitude (not signal) B1
(ii) unwanted energy/power B1
that is random or that covers whole spectrum B1
(b) number of $\mathrm{dB}=10 \lg \left(P_{\text {out }} / P_{\text {iN }}\right)$. C1
$63=10 \lg \left(P_{\text {OUT }} /\left(2.5 \times 10^{-6}\right)\right.$ C1
$P_{\text {OUT }}=5.0 \mathrm{~W}$ A1
C1
length $=81.5 / 12=6.8 \mathrm{~km}$ A1

