UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary and Advanced Level

MARK SCHEME for the November 2004 question paper

9702 PHYSICS

9702/02

Paper 2 (Structured), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9702 (Physics) in the November 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	A	В	E	
Component 2	60	41	37	25	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

November 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/02

PHYSICS Paper 2 (Structured)

	Page 1	Mark Scheme A and AS LEVEL – NOVEMBER 2004	Syllabus 9702	Paper 2	
1	(a) (i) e.g. cł	neck for zero error (on micrometer)/zero the micrometer		B1	
	(ii) take re	eadings along the length of the wire/at different points		B1	
	(iii) take re	eadings spirally/around the wire		B1	[3]
	(b) (i) 4%			A 1	
	(ii) 8%			A 1	[2]
2	(a) all same s	speed in a vacuum (allow medium)/all travel in a vacuum	(1)		
	transverse	e/can be polarised	(1)		
	undergo d	liffraction/interference/superposition	(1)		
	can be ref	flected/refracted	(1)		
	show prop	perties of particles	(1)		
	oscillating	electric and magnetic fields	(1)		
	transfer e	nergy/progressive	(1)		
	not affecte	ed by electric and magnetic fields	(1)		
	(allow any	/ three, 1 each)		B 3	[3]
	(b) 495 nm =	495 x 10 ⁻⁹ m		C1	
	number =	$1/(495 \times 10^{-9}) = 2.02 \times 10^{6}$		A1	[2]
	(allow 2 o	r more significant figures)			
	(c) (i) allow [·]	$10^{-7} \to 10^{-11} \text{ m}$		B1	
	(ii) allow	$10^{-3} \to 10^{-6} \text{ m}$		B1	[2]
3	(a) constant g	gradient/straight line		B1	[1]
	(b) (i) 1.2 s			A 1	
	(ii) 4.4 s			A 1	[2]
	(c) either use	of area under line <i>or h</i> = average speed x time		C1	
	h = 1	½ x (4.4 − 1.2) x 32		C1	
	= {	51.2 m		A1	[3]

(allow 2/3 marks for determination of h = 44 m or h = 58.4 m allow 1/3 marks for answer 7.2 m)

Page 2			Mark Scheme		Paper		
				A and AS LEVEL – NOVEMBER 2004	9702		2
	(d)	∆p	= m∆v	OR p = mv		C1	
			= 0.25	x (28 + 12)		C1	
			= 10 N	S		A 1	[3]
		(an	swer 4	N s scores 2/3 marks)			
3	(e)	(i)	total/si	um momentum before = total/sum momentum after		B1	
			in any	closed system		B1	[2]
		(ii)	either	the system is the ball and Earth		B1	
				momentum of Earth changes by same amount		B1	
				but in the opposite direction		B1	
			or	Ball is not an isolated system/there is a force on the ball	(B1)		
				Gravitational force acts on the ball	(B1)		
				causes change in momentum/law does not apply here	(B1)		[3]
				(if explains in terms of air resistance, allow first mark on	ly)		
4	(a)	wa	velengt	h = 1.50 m		B1	[1]
	(b)	v =	fλ			C1	
		spe	ed = 5	40 m s ⁻¹		A 1	[2]
	(c)	(pro	ogressi	ve) wave reflected at the (fixed) ends		B1	
		wa	/e is fo	rmed by superposition of (two travelling) waves		B1	
		this	quanti	ty is the speed of the travelling wave		B1	[3]
5	(a)	(i)	F/A			B1	
		(ii)	ΔL/L			B1	
		(iii)	FL/A.∆	L		B1	[3]
	(b)	(i)	$\Delta L = C$	0.012 x 0.62 x 350		M2	
			= 2	2.6 mm		A 0	[2]
		(ii)	2.0 x 1	$0^{11} = (F \ge 0.62)/(7.9 \ge 10^{-7} \ge 2.6 \ge 10^{-3})$		C1	
			F = 66	0 N		A 1	[2]

Page 3				Mark Scheme A and AS LEVEL – NOVEMBER 2004			aper 2
		(111)	either	stress when cold = $660/(7.9 \times 10^{-7}) = 840$ MPa	5702		2
		()	or	tension at uts = 198 N		M1	
				this is greater than the ultimate tensile stress			
			or	tension at uts is less then tension in (ii)		A1	
				e will snap		A1	[3]
				possibility for the two 'A' marks to be scored as long as s	some quan		
			•	r – even if incorrect – has been given for the 'M' mark)		man	
6	(a)	(i)	resista	nce is ratio <i>V/I</i> (at a point)		B1	
			either	gradient increases or <i>I</i> increases more rapidly than V		B1	[2]
			(If stat	es R = reciprocal of gradient, then 0/2 marks here)			
		(ii)	curren	t = 2.00 mA		C1	
			resista	ince = 2 000 Ω		A1	[2]
	(b)	(i)	straigh	t line from origin		M1	
			passin	g through (6.0 V, 4.0 mA) (allow ½ square tolerance)		A 1	[2]
		(ii)	individ	ual currents are 0.75 mA and 1/33 mA		C1	
			curren	t in battery = 2.1 mA		A 1	[2]
			(allow	argument in terms of $P = I^2 R$ or IV)			
	(c)	sar	ne curr	ent in R and in C		M1	
		p.d	. acros	s C is larger than that across R		M1	
		so	since p	ower = <i>VI</i> , greater in C		A1	[3]
		(all	ow arg	ument in terms of $P = I^2 R$ or IV)			
7	(a)	(i)	nucleu	is is small		M1	
			in com	parison to size of atom		A 1	[2]
		(ii)	nucleu	is is massive/heavy/dense		B1	
			and ch	arged (allow to be scored in (i) or (ii))		B1	[2]
	(b)	(i)	symme	etrical path and deviation correct w.r.t. position of nucleus	3	B1	
			deviati	on less than in path AB		B1	
		(ii)	deviati	on > 90° and in correct direction		B1	[3]