UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the November 2004 question paper

9702 PHYSICS

9702/04

Paper 4 (Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9702 (Physics) in the November 2004 examination.

	maximum	minimum mark required for grade:				
	mark available	А	В	Е		
Component 4	60	39	34	18		

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

November 2004

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9702/04

PHYSICS Paper 4 (Core)

	Page 1		Mark Scheme	Syllabus	F	aper
			A LEVEL – NOVEMBER 2004	9702		4
1	(a)	heta (rad	d) = 2 π x (10.3/360) = 0.180 rad (n.b. 3 sig. fig.)		1 1	[2]
	(b)	(i)	$\tan \theta = 0.182$ (n.b. 3 sig. fig.)		1	
		(ii)	percentage error = (0.002/0.180) x 100		1	
			= 1.1 (%)		1	[3]
			(allow 0.002/0.182 and allow $1 \rightarrow 4$ sig. fig.)			
2	(a)	(i)	grav. pot. energy = GM_1M_2/R energy = {6.67 x 10 ⁻¹¹ x 197 x 4 x (1.66 x 10 ⁻²⁷) ² }/9.6 = 1.51 x 10 ⁻⁴⁷ J	x 10 ⁻¹⁵	1 1 1	[3]
		(ii)	elec. pot. energy = $Q_1 Q_2 / 4\pi \varepsilon_0 R$ energy = {79 x 2 x (1.6 x 10 ⁻¹⁹) ² }/ 4π x 8.85 x 10 ⁻¹² x 9 = 3.79 x 10 ⁻¹² J	.6 x 10 ⁻¹⁵	1 1 1	[3]
		(For	the substitution, -1 each error or omission to max 2 in (i) and in (ii))		
	(b)	elect	ric potential <u>energy</u> >> gravitational potential <u>energy</u>		1	[1]
	(c)		r 6 MeV = 9.6 x 10^{-13} J or 3.79 x 10^{-12} J = 24 MeV nough energy to get close to the nucleus		1 1	[2]
3	(a)	(i)	reasonable shape as 'inverse' of k.e. line		1	
		(ii)	straight line, parallel to x-axis at 15 mJ		1	[2]
	(b)	eithe	r (max) kinetic energy $(= \frac{1}{2} mv^2) = \frac{1}{2} m\omega^2 a_0^2$ $15 \times 10^{-3} = \frac{1}{2} \times 0.15 \times \omega^2 \times (5.0 \times 10^{-2})^2$ $\omega = 8.9(4) \text{ rad s}^{-1}$		1 1 1	
		or	(k.e. = $\frac{1}{2}$ mv ²), v = 0.44(7) m s ⁻¹ ω = v/a = (0.447)/(5.0 x 10 ⁻²) ω = 8.9(4) rad s ⁻¹		1 1 1	[3]
	(c)	(i)	<i>either</i> loss of energy (from the system) <i>or</i> amplitude de <i>or</i> additional force acting (on the mass) <i>either</i> continuous/gradual loss <i>or</i> force always opposir		1 1	[2]
		(ii)	either (now has 80% of its) p.e./k.e. = 12 mJ or loss in new amplitude = 4.5 cm (allow ± 0.1 c		1 1	[2]

	Page 2	2	Mark Scheme	Syllabus	Ρ	aper
			A LEVEL – NOVEMBER 2004	9702		4
4	(a)	(i)	50 mT		1	
		(ii)	flux linkage = BAN = 50 x 10 ⁻³ x 0.4 x 10 ⁻⁴ x 150 = 3.0 x 10 ⁻⁴ Wb		1 1	[3]
			(allow 49 mT \rightarrow 2.94 x 10 ⁻⁴ Wb or 51 mT \rightarrow 3.06 x 10 ⁻⁴ W	b)		
	(b)	prop	f./induced voltage <i>(do not allow current)</i> ortional/equal to of change/cutting of flux (linkage)		1 1	[2]
					1	[4]
	(c)	(i)	new flux linkage = 8.0 x 10 ⁻³ x 0.4 x 10 ⁻⁴ x 150 = 4.8 x 10 ⁻⁵ Wb		1	
			change = 2.52 x 10 ⁻⁴ Wb		1	[2]
		(ii)	e.m.f. = $(2.52 \times 10^{-4})/0.30$ = 8.4 x 10 ⁻⁴ V		1 1	[2]
	(d)	eithe	er for a small change in distance x		1	
			(change in) flux linkage decreases as distance increase so speed must increase to keep rate of change constan		1 1	[3]
		or	(change in) flux linkage decreases as distance increase	s ((1)	[0]
			at constant speed, e.m.f/flux linkage decreases as x inc so increase speed to keep rate constant		(1) (1)	
5	(a)	into	(plane of) paper/downwards		1	[1]
	(b)	(i)	the <u>centripetal force</u> = mv^2/r $mv^2lr = Bqv hence q/m = v/r B$ (some algebra essenti	al)	1 1	[2]
		(ii)	$q/m = (8.2 \times 10^6)/(23 \times 10^{-2} \times 0.74)$ = 4.82 x 10 ⁷ C kg ⁻¹		1 1	[2]
	(c)	(i)	mass = $(1.6 \times 10^{-19})/(4.82 \times 10^7 \times 1.66 \times 10^{-27})$		1	
			= 2u		1	[2]
		(ii)	proton + neutron		1	[1]
6	(a)	(i)	either probability of decay or $dN/dt = (-)\lambda N$ OR A =	-)λN	1	
			per unit time with symbols explained		1	[2]
		(ii)	greater energy of α particle means		0	
			(parent) nucleus less stable nucleus more likely to decay		1 1	
			hence Radium-224		1	[3]
	(b)	(i)	<i>either</i> $\lambda = \ln 2/3.6$ or $\lambda = \ln 2/3.6 \times 24 \times 3.6$ = 0.193 $= 2.23 \times 10^{-6}$	00	1	
			unit day ⁻¹ s ⁻¹		1	[2]
			(one sig.fig., -1, allow λ in hr^{-1})			
			()			

(ii)	A LEVEL – NOVEMBER 2004	9702		4
(ii)	$N = (2.24 \times 10^{-3})(224) \times 6.02 \times 10^{23}$			
	$N = \{(2.24 \times 10^{-3})/224\} \times 6.02 \times 10^{23} \\= 6.02 \times 10^{18} \\activity = \lambda N$		1 1	
	$= 2.23 \times 10^{-6} \times 6.02 \times 10^{18}$ $= 1.3 \times 10^{13} \text{ Bq}$		1 1	[4]
0.1 n =	= exp(-In2 . n) 3.32		1 1	[2]
,			1 1	[2]
o) e.g.	 /short response time 2 readings taken at a point/physically small 3 can be used to measure temperature difference 4 no power supply required 		2	[2]
1	0.1 = n = 3 (<i>n</i> =) varia two	$= 2.23 \times 10^{-6} \times 6.02 \times 10^{18}$ = 1.3 x 10 ¹³ Bq) $A = A_0 e^{-\ln 2.t/T}$ 0.1 = exp(-ln2 . n) n = 3.32 (<i>n</i> = 3 without working scores 1 mark)) variation is non-linear two possible temperatures) e.g. 1. small thermal capacity/measure $\Delta\theta$ of small object /short response time 2 readings taken at a point/physically small 3 can be used to measure temperature difference	$= 2.23 \times 10^{-6} \times 6.02 \times 10^{18}$ = 1.3 x 10 ¹³ Bq) $A = A_0 e^{-\ln 2.t/T}$ 0.1 = exp(-ln2 . n) n = 3.32 (<i>n</i> = 3 without working scores 1 mark)) variation is non-linear two possible temperatures) e.g. 1. small thermal capacity/measure $\Delta\theta$ of small object /short response time 2 readings taken at a point/physically small 3 can be used to measure temperature difference 4 no power supply required	$= 2.23 \times 10^{-6} \times 6.02 \times 10^{18}$ $= 1.3 \times 10^{13} \text{ Bq}$ 1 $A = A_0 e^{-\ln 2.t/T}$ $0.1 = \exp(-\ln 2 \cdot n)$ $n = 3.32$ (<i>n</i> = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 1 (n = 3 without working scores 1 mark) 2 (n = 3 without working scores 1 mark) 3 (n = 3 without working scores 1 mark) 4 (n = 3 without working scores 1 mark) 4 $(n = 3 \text$