UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary and Advanced Level

MARK SCHEME for the November 2004 question paper

9702 PHYSICS

9702/06

Paper 6, maximum mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9702 (Physics) in the November 2004 examination.

maximum		minimum mark required for grade:			
	mark available	А	В	E	
Component 6	40	30	27	15	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

November 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9702/06

PHYSICS Paper 6

Page 1 Mark Scheme Syllabus	
i ago i Oynabas	Paper
A and AS LEVEL – NOVEMBER 2004 9702	6

Option A – Astrophysics and Cosmology

1	nearest (neighbour) star/Proxima Centauri diameter of (Milky Way)galaxy	B1 B1 B1 B1	[4]
2 e.g.	means light is too faint Light pollution	M1 AI M1 AI	[4]
3 (a)(i)		B1 B1	[2]
(ii)		B1 B1	[2]
(b)(i)1	$H_0 = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (allow 80 \rightarrow 125 km s $^{-1} \text{ Mpc}^{-1}$) 1 Mpc = 3.1 × 10 ¹⁹ km $H_0 = 100/(3.1 × 10^{19}) = 3.2 × 10^{-18} \text{ s}^{-1}$	B1 A1 C1	
	Age = $1/H_0 = 3.1 \times 10^{17}$ s	A1	[4]
(i)2		C1 A1	[2]
(ii)		C1 A1	[2]

Page 2	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – NOVEMBER 2004	9702	6

Option F – The Physics of Fluids

4	(a)	M shown near base of stem	B1	[1]
	(b)(i)	density = mass/volume volume submerged in liquid of density 1.0 g cm ⁻³ = 165 cm ³ volume submerged in liquid of density 1.1 g cm ⁻³ = 150 cm ³ change in volume = 15 cm ³	C1 C1 C1 A1	
	(ii)	distance (= 15/0.75) = 20 cm	A1	[5]
5	(a)	arrows longer at centre than edges arrows parallel and correct relative lengths	M1 A1	[2]
	• •	no unique value of (linear) speed l volume flow rate doubles 2 new radius = $1.05 r$ new flow rate = 1.054×2 = $2.4(2)$ times grapter	B1 A1 C1	[1]
		= 2.4(3) times <u>greater</u>	A1	[3]
6	(a)	(fluid) flow/movement that is erratic/has eddies i.e. speed varies continuously (in magnitude and direction) with time	B1 B1 B1	[3]
	(b)(i)	for turbulent flow, F_D/v^2 $v = 58 \text{ m s}^{-1}$	C1 A1	[2]

Page 3	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – NOVEMBER 2004	9702	6

Option M – Medical Physics

7	(a)	pulse of ultrasound reflected from boundaries received (at surface) and processed time for pulse to return gives depth of boundary reflected intensity gives information on nature of boundary	B1 B1 B1 B1 B1	[5]
	(b)	fraction = $e^{-23 \times 0.055}$ = 0.28	C1 A1	[2]
	(c)	fraction = $0.28 \times 0.35 \times 0.28$ = 0.027 (or $0.35e^{-23 \times 0.11} = 0.028$)	C1 A1	[2]
8	(a)(i)	rays from S converge to point behind retina	B1	
	(ii)	range of image distances such that image is tolerably in focus	B1 B1	[3]
	(b)	for the same size of patch on the retina focused image is further from the retina (so) depth of focus is increased	M1 A1 B1	[3]
9	(a)	intensity = $(0.33 \times 10^{-6}) / (65 \times 10^{-6})$ = 5.1 (5.08) × 10 ⁻³ W m ⁻² <i>I.L.</i> = 10 lg (5.08 × 10 ⁻³) / (1.0 × 10 ⁻¹²) = 97 dB	C1 C1 C1 A1	[4]
	(b)	(long-term exposure) could cause deafness OR (short-term exposure) could cause tinnitus	B1	[1]

Page	4	Mark Scheme	Syllabus	Paper	
		A and AS LEVEL – NOVEMBER 2004	9702	6	
Option P	9 – Environme	ental Physics			
10 (a)	into two appr	eus/named appropriate nucleus splits oximately equal parts/named components ase of neutrons and energy		B1 B1 B1	[3]
(b)	moderator: control rods	slows down (high speed) neutrons so that further fissions are more likely/will take pla absorb neutrons to provide control over the rate of fission	ice	M1 A1 M1 A1	[4]
11 (a)(i)	water moved potential ene	from (area of) trough to crest to form wave rgy = mgh = $\frac{1}{2} \lambda Aw\rho \times g \times A$ (must be laid out so that substitutions are ob	vious	B1 M1 M1	
(ii)	power = $\frac{1}{2}$ w	$= \frac{1}{2} w A^2 \lambda \rho g$ wavecrests passing a point per unit time	viousj	A0 M1 A1 A0	[3] [2]
(b)	e.g hazard to (any sensible	shipping, unsightly, upset to shoaling fish etc. suggestion)		B1	[1]
12 (a)	four outputs	clearly as 1140 W labeled correctly g approximately correct ratio of widths		B1 M1 A1	[3]
(b)	very little the gas ring muc	ating more efficient at transferring energy to water rmal energy escapes because plastic is an insulato h less efficient because of thermal energy losses to gy losses due to conduction as kettle is metal		B1 B1 B1 B1	[4]

Page 5	Page 5 Mark Scheme		Paper
	A and AS LEVEL – NOVEMBER 2004	9702	6

Option T – Telecommunications

13 (a)	box for 1 m – 10 cm labeled T	B1	
(b)	box for 10 cm – 1 cm labeled S	B1	[2]
14 (a)	frequency of carrier wave varies (in synchrony) with information signal constant amplitude OR carrier frequency >> signal frequency change in frequency measures displacement of information signal rate at which carrier frequency varies gives frequency of information signal	B1 B1 B1 B1	[4]
(b)(i)	period = 0.8 μs frequency = 1.25 MHz	C1 A1	
(ii)	125 kHz	A1	[3]
(c)	advantage: e.g. better quality/less interference disadvatange: e.g. more transmitters/more expensive (any sensible suggestions, 1 each)	B1 B1	[2]
15 (a)(i)	sampled every 0.5 ms frequency = 2.0 kHz	C1 A1	
(ii)	at 1.0 V intervals	B1	
(iii)	4 bits	B1	[4]
(b)	needs sampling time shorter than smallest peak-trough interval any suggestion of about (0.2 ms or about) 5 kHz (allow $5 \text{ kHz} \rightarrow 10 \text{ kHz}$) needs voltage interval less than peak-trough height any suggestion at about 0.3 V (allow 0.1 V \rightarrow 0.4 V) so either 12/0.3 = 40 OR 11/0.3 = 37 OR 10/0.3 = 34 etc. (ignore binary nature of the ADC and the DAC)	B1 A1 B1 C1 A1	