UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the November 2004 question paper

9702 PHYSICS

9702/06
Paper 6, maximum mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9702 (Physics) in the November 2004 examination.

	maximum	minimum mark required for grade:		
	mark available	A	B	E
Component 6	40	30	27	15

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

November 2004

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 9702/06
PHYSICS
Paper 6

Page 1	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - NOVEMBER 2004	9702	6

Option A - Astrophysics and Cosmology

1 diameter of the Sun B1
nearest (neighbour) star/Proxima Centauri B1
diameter of (Milky Way) galaxy B1
extent of (visible) Universe (allow diameter/radius) B1
2 e.g. Atmospheric absorption/scattering M1
means light is too faint AI
Light pollution M1
means light cannot be distinguished against background AIIrregular atmospheric refraction/thermal currents(M1)means small objects blurred/not seen(AI)
(any two sensible suggestions \{M1 x 2$\}$ plus some further detail of each \{A1 x 2\})
3 (a)(i) either density such that Universe will not collapse or expand indefinitely B1

3 (a)(i) either density such that Universe will not collapse or expand indefinitelygreater density than ρ_{0} means collapse (OR vice versa)B1
or determines whether Universe is 'open' or 'closed' greater density than ρ_{0} means 'closed' OR smaller density than ρ_{0} means 'open'
(ii) (if Universe is closed eventually all) kinetic energy of galaxies will be converted to (gravitational) potential energy(gravitational) potential energy involves the gravitational constant GB1
(b)(i)1 (sensible straight line and) one or two points chosen with attempt at antilogs B1
$H_{0}=100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ (allow $80 \rightarrow 125 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$) A1
$1 \mathrm{Mpc}=3.1 \times 10^{19} \mathrm{~km}$ C1
$H_{0}=100 /\left(3.1 \times 10^{19}\right)=3.2 \times 10^{-18} \mathrm{~s}^{-1}$
Age $=1 / H_{0}=3.1 \times 10^{17} \mathrm{~s}$A1
(i)2 $\left.\rho_{0}=\left(3 \times 10^{-18}\right\}^{2}\right) /\left(8 \times \pi \times 6.67 \times 10^{-11}\right)$ C1
$=1.86 \times 10^{-26} \mathrm{~kg} \mathrm{~m}^{-3}$A1
(ii) number density $=\left(1.86 \times 10^{-26}\right) /\left(1.66 \times 10^{27}\right)$ C1

Page 2	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - NOVEMBER 2004	9702	6

Option F - The Physics of Fluids

4 (a) M shown near base of stem
(b)(i) density = mass/volume
volume submerged in liquid of density $1.0 \mathrm{~g} \mathrm{~cm}^{-3}=165 \mathrm{~cm}^{3}$
C1
volume submerged in liquid of density $1.1 \mathrm{~g} \mathrm{~cm}^{-3}=150 \mathrm{~cm}^{3}$ C1
change in volume $=15 \mathrm{~cm}^{3}$
C1
(ii) distance $(=15 / 0.75)=20 \mathrm{~cm} \quad$ A1

5 (a) arrows longer at centre than edges M1 arrows parallel and correct relative lengths A1
(b)(i) no unique value of (linear) speed

B1
(ii)1 volume flow rate doubles

A1
(ii) 2 new radius $=1.05 \mathrm{r}$
new flow rate $=1.054 \times 2$
C1

$$
=2.4(3) \text { times greater }
$$

A1
6 (a) (fluid) flow/movement \quad B1
that is erratic/has eddies
B1
i.e. speed varies continuously (in magnitude and direction) with time B1
(b)(i) for turbulent flow, F_{D} / v^{2}
$v=58 \mathrm{~m} \mathrm{~s}^{-1}$
C1
$v=58 \mathrm{~m} \mathrm{~s}^{-1}$ A1

Page 3	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - NOVEMBER 2004	9702	6

Option M - Medical Physics

7 (a) pulse of ultrasound B
reflected from boundaries
B1
received (at surface) and processed
B1
time for pulse to return gives depth of boundary
B1
reflected intensity gives information on nature of boundary B1
(b) $\begin{aligned} \text { fraction } & =e^{-23 \times 0.055} \\ & =0.28\end{aligned}$ C1
$=0.28$
A1
(c) $\quad \begin{aligned} \text { fraction } & =0.28 \times 0.35 \times 0.28 \\ & =0.027 \\ \left(\text { or } 0.35 \mathrm{e}^{-23 \times 0.11}=\right. & 0.028)\end{aligned}$

C1

8 (a)(i) rays from S converge to point behind retina B1
(ii) range of image distances B1
such that image is tolerably in focus B1
(b) for the same size of patch on the retina M1
focused image is further from the retina A1
(so) depth of focus is increased B1

9 (a) intensity $=\left(0.33 \times 10^{-6}\right) /\left(65 \times 10^{-6}\right)$ C1
$\begin{aligned} & =5.1(5.08) \times 10^{-3} \mathrm{~W} \mathrm{~m}^{-2}\end{aligned}$ C1
I.L. $=10 \lg \left(5.08 \times 10^{-3}\right) /\left(1.0 \times 10^{-12}\right)$ C1

$$
=97 \mathrm{~dB}
$$

(b) (long-term exposure) could cause deafness OR (short-term exposure) could cause tinnitus

Page 4	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - NOVEMBER 2004	9702	6

Option P - Environmental Physics

10 (a) massive nucleus/named appropriate nucleus splits B1
into two approximately equal parts/named components B1
with the release of neutrons and energy B1
(b) moderator: slows down (high speed) neutrons M1
so that further fissions are more likely/will take place A1
control rods absorb neutrons M1
to provide control over the rate of fission A1
11 (a)(i) water moved from (area of) trough to crest to form wave B1

potential energy $=m g h$

potential energy $=m g h$ M1 M1

$=1 / 2 \lambda A w \rho \times g \times A$

$=1 / 2 \lambda A w \rho \times g \times A$

$=1 / 2 \lambda A w \rho \times g \times A$

$=1 / 2 \lambda A w \rho \times g \times A$

$=1 / 2 \lambda A w \rho \times g \times A$

$=1 / 2 \lambda A w \rho \times g \times A$

(must be laid out so that substitutions are obvious)

(must be laid out so that substitutions are obvious)

(must be laid out so that substitutions are obvious)

(must be laid out so that substitutions are obvious)

(must be laid out so that substitutions are obvious)

(must be laid out so that substitutions are obvious) M1 M1

$=1 / 2 w A^{2} \lambda \rho g$

$=1 / 2 w A^{2} \lambda \rho g$ AO 1
(ii) there are V / λ wavecrests passing a point per unit time
(ii) there are V / λ wavecrests passing a point per unit time
(ii) there are V / λ wavecrests passing a point per unit time
(ii) there are V / λ wavecrests passing a point per unit time
(ii) there are V / λ wavecrests passing a point per unit time
(ii) there are V / λ wavecrests passing a point per unit time M1 M1 M1 M1 M1 M1
power $=1 / 2 w A^{2} \lambda \rho g \times V / \lambda$
power $=1 / 2 w A^{2} \lambda \rho g \times V / \lambda$
power $=1 / 2 w A^{2} \lambda \rho g \times V / \lambda$
power $=1 / 2 w A^{2} \lambda \rho g \times V / \lambda$
power $=1 / 2 w A^{2} \lambda \rho g \times V / \lambda$
power $=1 / 2 w A^{2} \lambda \rho g \times V / \lambda$ A1 A1 A1 A1 A1 A1
$=1 / 2 \mathrm{wA}^{2} \rho g \mathrm{~V}$
$=1 / 2 \mathrm{wA}^{2} \rho g \mathrm{~V}$ A0 A0 A0 A0 A0 A0
(b) e.g hazard to shipping, unsightly, upset to shoaling fish etc. (any sensible suggestion) B1
12 (a) input shown clearly as 1140 W B1
four outputs labeled correctly M1
arrows having approximately correct ratio of widths A1
(b) electrical heating more efficient at transferring energy to water B1
very little thermal energy escapes because plastic is an insulator B1
gas ring much less efficient because of thermal energy losses to the air B1
thermal energy losses due to conduction as kettle is metalB1

Abstract

^[]

[3]3][2]

[^1]| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | A and AS LEVEL - NOVEMBER 2004 | 9702 | 6 |

Option T - Telecommunications

13 (a) box for $1 \mathrm{~m}-10 \mathrm{~cm}$ labeled T B1
(b) box for $10 \mathrm{~cm}-1 \mathrm{~cm}$ labeled S B1
14 (a) frequency of carrier wave varies (in synchrony) with information signal B1
constant amplitude OR carrier frequency >> signal frequency B1
change in frequency measures displacement of information signal B1
rate at which carrier frequency varies gives frequency of information signal B1
(b)(i) period $=0.8 \mu \mathrm{~s}$ C1
frequency $=1.25 \mathrm{MHz}$ A1
(ii) 125 kHz A1
(c) advantage: e.g. better quality/less interference B1
disadvatange: e.g. more transmitters/more expensive B1(any sensible suggestions, 1 each)
15 (a)(i) sampled every 0.5 ms C1
frequency $=2.0 \mathrm{kHz}$ A1
(ii) at 1.0 V intervals B1
(iii) 4 bits B1
(b) needs sampling time shorter than smallest peak-trough interval B1
any suggestion of about (0.2 ms or about) 5 kHz (allow $5 \mathrm{kHz} \rightarrow 10 \mathrm{kHz}$) A1
needs voltage interval less than peak-trough height B1
any suggestion at about 0.3 V (allow $0.1 \mathrm{~V} \rightarrow 0.4 \mathrm{~V}$) C1
so either $12 / 0.3=40$ OR $11 / 0.3=37$ OR 10/0.3 $=34$ etc. A1(ignore binary nature of the ADC and the DAC)

[^1]: [4]

