MARK SCHEME for the October/November 2006 question paper

9702 PHYSICS

9702/04

4 Paper 4 (Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2		age 2	Mark Scheme	Syllabus	Paper 04	
			GCE A/AS LEVEL - OCT/NOV 2006	9702		
1	(a)		<i>r</i> ratio of work done to mass/charge ork done moving unit mass/charge from infinity			
			th have zero potential at infinity		B1	[1]
	(b)	elect	tational forces are (always attractive) ric forces can be attractive or repulsive ravitational, work got out as masses come together		B1 B1	
		Ū	/mass moves from infinity ectric, work done on charges if same sign, work got out if opposite	sign as charges	B1	
•			e together		B1	[4]
2	(a)	(i)	idea of heat lost (by oil) = heat gained (by thermometer) 32 x 1.4 x $(54 - t)$ = 12 x 0.18 x $(t - 19)$ $t = 52.4^{\circ}C$		C1 C1 A1	[3]
		(ii)	<i>either</i> ratio (= 1.6/54) = 0.030 <i>or</i> (=1.6/327) = 0.0049		A1	[1]
	(b)		nistor thermometer (allow 'resistance thermometer') use small mass/thermal capacity		B1 B1	[2]
	(c)	boiling point temperature is constant further comment				
		e.g. ł	neating of bulb would affect only rate of boiling		A1	[2]
3	(a)	use of $a = -\omega^2 x$ clear either $\omega = \sqrt{(2k/m)}$ or $\omega^2 = (2k/m)$ $\omega = 2 \pi f$ $f = (1/2 \pi) \sqrt{(2 \times 300)/0.240)}$ $= 7.96 \approx 8$ Hz				
	(b)	(i)	resonance		B1	[1]
		(ii)	8 Hz		B1	[1]
	(c)	(increase amount of) damping without altering (<i>k</i> or) <i>m</i> (some indirect reference is acceptable) sensible suggestion				
4	(a)	(i)	$GMm \{ (R + h_1)^{-1} - (R + h_2)^{-1} \}$ $\frac{1}{2}m \{ v_1^2 - v_2^2 \}$		B1 B1	[2]
	(b)	b) $2M \ge 6.67 \ge 10^{-11} \{(26.28 \ge 10^6)^{-1} - (29.08 \ge 10^6)^{-1}\} = 5370^2 - 5090^2$ $M \ge 4.888 \ge 10^{-19} = 2.929 \ge 10^6$ $M = 6.00 \ge 10^{24} \text{ kg}$ (If equation in (a) is dimensionally unsound, then 0/3 marks in (b), if dimensionally sou incorrect, treat as e.c.f.)				[3]
5	(a)	(i)	(induced) e.m.f proportional/equal to rate of change of flux (linkag (allow 'induced voltage, induced p.d.)	e)	B1	
			flux is cust as the disc moves hence inducing an e.m.f		M1 A0	[2]
		(ii)	field in disc is not uniform/rate of cutting not same/speed of disc n disc) so different e.m.f.'s in different parts of disc lead to eddy currents	ot same (over whole	B1 M1 A0	[2]
	(b)	energ	currents dissipate thermal energy in disc gy derived from oscillation of disc gy of disc depends on amplitude of oscillations		B1 B1 B1	[3]

P	Page 3		Mark Scheme Syllabu	JS	Paper	
			GCE A/AS LEVEL - OCT/NOV 2006 9702		04	
6 (a)	(i)		k voltage = 6√2 k voltage = 8.48 V		C1 A1	[2]
	(ii)	zero	because <i>either</i> no current in circuit (and <i>V</i> = <i>IR</i>) <i>or</i> all p.d. across diode		B1	[1]
(b)		eform: w ±¼ :	half-wave rectification peak height at about 4.25 cm half-period spacing of 2.0 cm square for height and half-period)		B1 B1 B1	[3]
(c)	(i)	сара	acitor shown in parallel with resistor		B1	[1]
	(ii)	eithe	er energy = $\frac{1}{2}CV^2$ or = $\frac{1}{2}QV$ and $Q = CV$ = $\frac{1}{2} \times 180 \times 10^{-6} \times (6\sqrt{2})^2$ = 6.48 x 10 ⁻³ J		C1 C1 A1	[3]
	(iii)		<i>er</i> fraction = 0.43 ² or final energy = 1.2 mJ tion = 0.18		C1 A1	[2]
7 (a)	(i)		ntum/packet/discrete amount of energy tromagnetic mentioned		M1 A1	[2]
	(ii)		x. k.e. corresponds to electron emitted from surface rgy is required to bring electron to surface		B1 B1	[2]
(b)	at hiç so ra (allov		M1 A1	[2]		
8 (a)	(i)	eithe or	er number = $6.02 \times 10^{23} \times (\{2.65 \times 10^{-6}\}/234)$ number = $(2.65 \times 10^{-9})/(234 \times 1.66 \times 10^{-27})$ = 6.82×10^{15}		C1 A1	[2]
	(ii)	A =	$\lambda N = \lambda \times 6.82 \times 10^{15}$		C1	
			$= 2.86 \times 10^{-14} \text{ s}^{-1}$		A1	[2]
	(iii)	=	= ln2/ λ = 7.82 x 10 ¹² s = 2.48 x 10 ⁵ years		C1 A1	[2]
(b)	half-l	life is (B1	[1]	
(c)	there	e woul	d be appreciable decay of source during the taking of measurements		B1	[1]