MARK SCHEME for the October/November 2007 question paper

9702 PHYSICS

9702/31
Paper 31 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9702	31

Question 1

Manipulation, measurement and observation

Successful collection of data

(a) (i) D iam eterofw ire. 2 d .p. (mm) in raw data. A low 0.195 or 0.190 mm . ($0.19 \mathrm{~mm}-0.02 \mathrm{~mm}$ orSV -0.02 mm). Consistentunit. Unitneeded.
(i) Repeatm easurem ent
(c) 6 m easurem ents in table

Five m arks forsix sets ofreadings forV and 1
Fourm arks for five sets
Three m arks forfoursets, etc.
Major rorunspecified hep 2 (e.g.setting up circuit)
M inorhep: 1 (e.g.m inorchanges with circuit) AND 1 (hep with reading m icrom eter)
Unreasonabl values ofV 1
(e.g.Vollage values are the same $\mathrm{V}_{\mathrm{max}} \quad \mathrm{V}_{\mathrm{m} \text { in }}<0.5 \mathrm{~V}$), wrong trend
($1, V$) or ifany one value ofV $<0.5 \mathrm{~V}$.)
Range and distribution of values
(c) $A_{\text {nax }} \quad l_{\text {in }}$) m ustbe greater than orequalto 70 cm . Ignore POT error.

Presentation of data and observations

Table: layout
(c) Colum n headings: $V N ; 1 / \mathrm{cm} ; ~ I / A \mathrm{~m}^{-1}$.

Each colum n heading m ustcontain a quantily and a unitwhere appropriate.
Ignore units in the body of the tabl. Ignore POT enors.
There m ustbe som e distinguishing m ark between the quantily and the unit (ie. solidus is expected, butaccept, forexam ple, l(cm)).

Table: raw data
(c) Consistency ofpresentation ofraw readings

Allvalues oflm ustbe given to the sam e num berofdecm alplaces.
lread to 1 mm or 1 cm
Table: calculated quantities
(c) Significant figures. Apply to $1 / \mathrm{A}$.
$1 / A$ should be given to the sam e num berorone m ore than the bwestnum berof significant figures from lorraw values ofd.
(c) Values of $1 /$ A correctusing candidate sfares.Albw sm allrounding enrors. C heck a value. If incomect, write in the comect value. Ignore POT emor.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9702	31

Graph: layout
(G raph) Axes. Ifw rong graph pbtted (e.g.lagainstl/A) do notaw ard mark. Sensble scales m ustbe used. Aw kw ard scales (e.g. 3:10) are notalbwed. S cales m ustbe chosen so that the plotted points occupy at leasthalf the graph grid in both x and y directions. Allow inverted axes. Scales m ustbe labelled with the quantily which is being plotted. Ignore unis.

Graph: plotting of points

> (G raph) Allobservations m ustbe plbtted. No blbbs (points [halfa sm allsquare). R ing and check a suspectplet. Tick if conect. Re-plot if incomect. W ork to an accuracy ofhalfa sm allsquare.

Graph: trend line
(G raph) Line ofbest fiit. A lbw 1 pointoff. At least5 trend plots needed. D o notaw ard m ark iflarge scatter.
Judge by scatterofpoints about the candidate's line.
There m ustbe a fairscatterofpoints eitherside of the line. Indicate best line ifcandidate's line is not the best line.

Quality of data
(G raph) Judge by scatter ofpoints about the best fit line. A lbw up to - 0.05 V .
Allplotted points are assessed forthis m ark.
At least5 pbts needed. IfV constantdo notaw ard mark.

Analysis, conclusions and evaluation

Interpretation of graph
(d) (iii) G radient

The hypotenuse of the m ustbe atleasthalfthe length of the drawn line. Read-offs m ustbe accurate to halfa sm allsquare. D o notallow table values unless on the line ofbest fit. W rite in correctread off. Check for y / x (ie. do notallow x / y).
(d) (iii) y-intercept

The value m ust.be read to the nearesthalfsquare.
The value can be calculated using ratios ory $=\mathrm{mx}+\mathrm{c}$. Incorrectalgebra 1 . Ifa false origin has been used then labelFO.

Drawing conclusions
(e) Value fork, 0.5 V Y k Y 2.5 V

Should be y-intercept. U nitrequired. 2 or 3 SF .
(e) Value for $1,0.05 \mathrm{~A} Y$ IY 020 A

M ustcom e from gradient. W orking m ustbe checked. Unitrequired $A\left({ }^{-1}\right)$. 2 or 3SF.
Sensble answerchecked using candidate s figures into correctsubstimution. $m=I$

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9702	31

Question 2

Manipulation, measurement and observation

Successful collection of data
(a) (iii) Position ofend ofnule atequilibrium . Nearestam ormm.<1m C onsistentunit.
(b) Firstvalue ofd betw een 1 and 5 cm . Iflbwestposition given write in correctvalue ofd.
(b) Firstvalue ofhighestposition with 5 cm ofthe equilibrium position.
(d) Second value ofd.D ifferentvalue to the first. A lbw outofrange.
(d) Second value ofhighestposition.
(d) Repeated m easurem ents forhighestposition (evidence from (b) or(d))

Quality of data
(d) B iggerd gives biggerx. C heck w ith comected values ofd and x.

Ifd $<x$ in eithercase orifd $=x$ in both cases, this bses the m ark.

Presentation of data and observations

Display of calculation and reasoning
(b) Firstvalue ofx calculated comectly

Calculation m ustbe checked. W rite dow n the correctvalue ifanswerw rong.
(d) Second value ofx calculated correctly

Calculation m ustbe checked.W rite down the correctvalue ifanswerwrong.
(e) Correctcalculation to check proportionality ecfif candidates value ofd is the bwestposition. P ossibilities include: tw o calculations ofx/d
ratio ofx values and ratio ofd values both calculated

Analysis, conclusions and evaluation

Drawing conclusions
(e) Conclusion based on calculation. C onsistentargum ent.

Incorrectideas score zero.
Estimating uncertainties
(c) Percentage uncertainty in x

Albw uncertainty in $x ; 2 \mathrm{~mm}$ Y $x Y 10 \mathrm{~mm}$.
If repeated readings have been done then the uncertainty could be halfthe range.
C orrectratio idea required x 100 stated/im plied.

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2007	9702	31

Identifying limitations

(f) (i) Relvantpoints m ustbe underlined and ticked. Som e ofthese m ightbe:

A Only two readings (are notenough to draw a valid conclusion).
B H ard to judge/see (when/w here) highestpostion w ith reference to m ovem ent. D o notacceptreaction time ideas.

C Parallax (emor) orgood diagram dem onstrating this.
D D ifficully in releasekeeping rule stillprorto release (reference to force).
E Equilibrium position changes w ith evidence show n in m easurem ents.
X O theradditionalsource ofemor.

Suggesting improvements

(f) (ii) Relevantpoints m ustbe underlined and ticked. 4 Som e of these m ightbe:

A Take more readings and pbta graph/calculate k values.
B H igh speed (cam era to take) photographs/fim the motion and play back frame by frame/sbw motion/use pause OR
motion position sensorabove/bebw m ass OR trialand emorw ith lightgate/horizontalm arker.

C Measure ateye levelrepeatto geteye in rightphace/place rule as cbse as possble to verticalnuluse heler to release orm easure/use mounted pin at end ofrul to hel bcate position on scale).

D Use a named method to release the nule e.g. cotton and candle or scissors/electrom agnet/end stop orclam p.

X cm rule use ammpre need to see evidence in their previous measurem ents that the ir readings are taken to the nearestcm or 0.5 cm .

Y O theradditionalsolution, wellexplained.
Do notalbw repeated readings, vacuum, draft free room
Do notalbw use a com puterto in prove the experim ent
Do not albw increase range/change bad on mler/change length of mler/changing quality ofruler

