MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/02
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	$\mathbf{9 7 0 2}$	02

1 (a) (i) $Q=$ It (allow any subject for the equation)
B1
(ii) I
B1
t
B1
(allow 1 mark only if all three quoted)
(b) (i) base unit of I is A
base unit of n is $\mathrm{m}^{-3} \quad\left(n o t / \mathrm{m}^{-3}\right)$
base unit of S is m^{2}
base unit of q is As (not C)
base unit of v is $\mathrm{m} \mathrm{s}^{-1}$
(-1 for each error or omission) B3
(-1 for each error or omission) B3
(ii) $A=m^{-3} \mathrm{~m}^{2} \mathrm{As}\left(\mathrm{m} \mathrm{s}^{-1}\right)^{k}$

M1
(ii) $\begin{aligned} & A=\mathrm{m}^{-3} \mathrm{~m}^{2} \mathrm{As}\left(\mathrm{m} \mathrm{s}^{-1}\right)^{k} \\ & \text { e.g. for } \mathrm{m}: \quad 0=-3+2+k \\ & k=1\end{aligned}$
$k=1$
A1

$$
t^{2}=2 a x
$$

$v^{2}=2 \times 0.85 \times 9.8 \times 12.8$
$v=14.6 \mathrm{~m} \mathrm{~s}^{-1}$
C1
A1
(ii) time $=29.3 / 14.6$

C1

$$
=2.0 \mathrm{~s}
$$

A1
(any acceleration scores 0 marks; allow 1 s.f.)
(b) either $60 \mathrm{~km} \mathrm{~h}^{-1}=16.7 \mathrm{~m} \mathrm{~s}^{-1}$
or $\quad 14.6 \mathrm{~m} \mathrm{~s}^{-1}=53 \mathrm{~km} \mathrm{~h}^{-1}$
or $\quad 22.1 \mathrm{~m} \mathrm{~s}^{-1}=79.6 \mathrm{~km} \mathrm{~h}^{-1} \quad$ M1
so driving within speed limit A1
but reaction time is too long / too slow B1

3 (a) moment: force \times perpendicular distance M1
between the two forces A1
(penalise the 'perpendicular' omission once only)
(b) (i) $W \times 4.8=(12 \times 84)+(2.5 \times 72) \quad \mathrm{C} 1$
$W=250 \mathrm{~N}(248 \mathrm{~N}) \quad \mathrm{A} 1$
(ii) either friction at the pivot or small movement of weights B1

4 (a) (i) either force $=\mathrm{e} \times(V / d)$ or $E=V / d \quad$ C1

$$
\begin{array}{ll}
=1.6 \times 10^{-19} \times\left(250 / 7.6 \times 10^{-3}\right) & \text { C1 } \\
=5.3 \times 10^{-15} \mathrm{~N} & \text { A1 } \tag{3}
\end{array}
$$

(ii) either $\Delta E_{\mathrm{K}}=\mathrm{eV}$ or $\Delta E_{\mathrm{K}}=F d \quad \mathrm{C} 1$

$$
\begin{array}{lll}
=1.6 \times 10^{-19} \times 250 & =5.3 \times 10^{-15} \times 7.6 \times 10^{-3} & \text { M1 } \\
=4.0 \times 10^{-17} \mathrm{~J} & & \text { A0 }
\end{array}
$$

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9702	02

(iii) either $\quad \Delta E_{K}=1 / 2 m v^{2}$

$$
\begin{array}{ll}
4.0 \times 10^{-17}=1 / 2 \times 9.1 \times 10^{-31} \times v^{2} & \text { C1 } 1 \\
v=9.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} & \text { A1 }
\end{array}
$$

$$
v^{2}=2 a s \text { and } a=F / \mathrm{m}
$$

$$
\begin{equation*}
v^{2}=\left(2 \times 5.3 \times 10^{-15} \times 7.6 \times 10^{-3}\right) /\left(9.11 \times 10^{-31}\right) \tag{C1}
\end{equation*}
$$

$$
\begin{equation*}
v=9.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}
\end{equation*}
$$

$\begin{array}{ll}\text { (b) speed depends on (electric) potential difference } & \text { M2 } \\ \text { (If states } \Delta E_{K} \text { does not depend on uniformity of field, then } & \end{array}$ award 1 mark, treated as an M mark) so speed always the same
or $\quad v^{2}=2$ as and $a=F / m$
(a) haphazard / random / erratic / zig-zag movement M1 of (smoke) particles (do not allow molecules / atoms) A1
(b) motion is due to unequal / unbalanced collision rates (on different faces)
(unequal collision rate due to) random motion of (gas) molecules / atoms
B1
(c) either collisions with air molecules average out
or particle is more massive / heavier / has large inertia (M1) collisions cause only small movements / accelerations (A1)

6 (a) wave incident at an edge / aperture / slit /(edge of) obstacle M1 bending / spreading of wave (into geometrical shadow) A1
(award 0/2 for bending at a boundary)
(b) (i) apparatus e.g. laser \& slit / point source \& slit / lamp and slit \& slit microwave source \& slit water / ripple tank, source \& barrier B1
detector e.g. screen
aerial / microwave probe
strobe / lamp
what is observed B1
(ii) apparatus e.g. loudspeaker, and slit / edge B1
detector e.g. microphone \& c.r.o. / ear B1
what is observed B1

7 (a) either $V=I P \quad$ B1
current in circuit $=E /(P+Q) \quad$ B1
hence $V=E P /(P+Q)$
$\begin{array}{ll}\text { or } \quad \text { current is the same throughout the circuit } \quad \text { (M1) } \\ V / P=E /(P+Q) & \text { (A1) }\end{array}$
hence $V=E P /(P+Q) \quad$ (A0)

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9702	02

(b) (i) (as temperature rises), resistance of (thermistor) decreases M1 either resistance of parallel combination decreases or p.d. across $5 \mathrm{k} \Omega$ resistor / thermistor decreasesM1 p.d. across 2000Ω resistor / voltmeter reading increases A1
(ii) if R is the resistance of the parallel combination, either $3.6=(2 \times 6) /(2+R)$ or current in $2 \mathrm{k} \Omega$ resistor $=1.8 \mathrm{~mA} \quad \mathrm{C} 1$ $R=1.33 \mathrm{k} \Omega \quad$ current in $5 \mathrm{k} \Omega$ resistor $=0.48 \mathrm{~mA} \quad \mathrm{C} 1$
$\frac{1}{1.33}=\frac{1}{5}+\frac{1}{T} \quad$ current in thermistor $=1.32 \mathrm{~mA} \quad \mathrm{C} 1$ $T=1.82 \mathrm{k} \Omega \quad T=2.4 / 1.32=1.82 \mathrm{k} \Omega \quad \mathrm{A} 1$
$\begin{array}{lll}8 & \text { (a) } \begin{array}{l}\text { nucleus has constant probability of decay } \\ \text { per unit time / in a given time } \\ \text { (allow } 1 \text { mark for 'cannot predict which nucleus will decay next') }\end{array} & \text { M1 }\end{array}$
(b) (i) count rate / activity decreases B1
(ii) count rate fluctuates / is not smooth B1
(c) either the (decay) curves are similar / same or curves indicate same half-life B1

