MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/02 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme Syllabus	Paper	
			GCE A/AS LEVEL – October/November 2008 9702	02	
1	(a)	(i)	Q = It (allow any subject for the equation)	B1	[1]
		(ii)	I t (allow 1 mark only if all three quoted)	B1 B1	[2]
	(b)	(i)	base unit of <i>I</i> is A base unit of <i>n</i> is m^{-3} (not /m ⁻³) base unit of <i>S</i> is m^2 base unit of <i>q</i> is A s (not <i>C</i>) base unit of <i>v</i> is $m s^{-1}$ (-1 for each error or omission)	В3	[3]
		(ii)	$A = m^{-3} m^2 A s (m s^{-1})^k$	M1	
			e.g. for m: $0 = -3 + 2 + k$ k = 1	A1	[2]
2	(a)	(i)	$v^2 = 2as$ $v^2 = 2 \times 0.85 \times 9.8 \times 12.8$ $v = 14.6 \text{ m s}^{-1}$	C1 A1	[2]
		(ii)	time = 29.3 / 14.6 = 2.0 s (any acceleration scores 0 marks; allow 1 s.f.)	C1 A1	[2]
	(b)	eith or or so o but	<i>her</i> $60 \text{ km h}^{-1} = 16.7 \text{ m s}^{-1}$ 14.6 m s ⁻¹ = 53 km h ⁻¹ 22.1 m s ⁻¹ = 79.6 km h ⁻¹ driving within speed limit t reaction time is too long / too slow	M1 A1 B1	[3]
3	(a)	mo	oment: force × <u>perpendicular</u> distance of force from pivot / axis / point	M1 A1	
		cou (pe	uple: (magnitude of) one force × <u>perpendicular</u> distance between the two forces enalise the 'perpendicular' omission once only)	M1 A1	[4]
	(b)	(i)	$W \times 4.8 = (12 \times 84) + (2.5 \times 72)$ W = 250 N (248 N)	C1 A1	[2]
		(ii)	either friction at the pivot or small movement of weights	B1	[1]
4	(a)	(i)	either force = $e \times (V / d)$ or $E = V/d$ = 1.6 × 10 ⁻¹⁹ × (250 / 7.6 × 10 ⁻³) = 5.3 × 10 ⁻¹⁵ N	C1 C1 A1	[3]
		(ii)	either $\Delta E_{\rm K} = eV$ or $\Delta E_{\rm K} = Fd$ = 1.6 × 10 ⁻¹⁹ × 250 = 5.3 × 10 ⁻¹⁵ × 7.6 × 10 ⁻³ = 4.0 × 10 ⁻¹⁷ J (allow full credit for correct working via calculation of a and v)	C1 M1 A0	[2]

© UCLES 2008

	Page 3		Mark Scheme		Syllabus	Paper	
			GCE A/AS	LEVEL – October/November 2008	9702	02	
		(iii) e c	wither $\Delta E_{\rm K} =$ 4.0×10^{-2} v = 9.2 $v^2 = 2.2$ $v^2 = (2)^{-2}$ v = 9.2	$\frac{1}{2}mv^2$ $10^{-17} = \frac{1}{2} \times 9.1 \times 10^{-31} \times v^2$ $4 \times 10^6 \text{ m s}^{-1}$ as and $a = F/m$ $2 \times 5.3 \times 10^{-15} \times 7.6 \times 10^{-3})/(9.11 \times 10^{-3})$ $4 \times 10^6 \text{ m s}^{-1}$	⁻³¹) (C1) (A1)	C1 A1	[2]
	(b)	speed (If sta award so sp	d depends on ates ΔE_{κ} does d 1 mark, treat eed always th	(electric) potential difference not depend on uniformity of field, ther ted as an M mark) e same	1	M2 A1	[3]
5	(a)	hapha of (sn	azard / randor noke) particles	n / erratic / zig-zag movement 6 (<i>do not allow molecules / atoms</i>)		M1 A1	[2]
	(b)	motio (unec	n is due to un qual collision ra	equal / unbalanced collision rate <u>s</u> (on ate due to) random motion of (gas) mo	different faces) blecules / atoms	B1 B1	[2]
	(c)	eithei or	r collisions w this prever particle is r collision <u>s</u> o	vith air molecules average out hts haphazard motion more massive / heavier / has large ine cause only small movements / acceler	ertia (M1) rations (A1)	M1 A1	[2]
6	(a)	wave incident at an edge / aperture / slit /(edge of) obstacle bending / spreading of wave (into geometrical shadow) (award 0/2 for bending at a boundary)			M1 A1	[2]	
	(b)	(i) a d	opparatus e.g. letector e.g. vhat is observe	laser & slit / point source & slit / lan microwave source & slit water / ripple tank, source & barrier screen aerial / microwave probe strobe / lamp	np and slit & slit	B1 B1 B1	[3]
		(ii) a d v	pparatus e.g. letector e.g. vhat is observe	loudspeaker, and slit / edge microphone & c.r.o. / ear ed		B1 B1 B1	[3]
7	(a)	eithei or	V = IP current in cir hence $V = E$ current is th V/P = E / (I) hence $V = E$	$\begin{aligned} &\text{rcuit} = E / (P + Q) \\ &\text{EP} / (P + Q) \\ &\text{e same throughout the circuit} \qquad ((P + Q)) \\ &\text{EP} / (P + Q) \qquad ((P + Q)) \end{aligned}$	M1) A1) A0)	B1 B1 A0	[2]

	Page	e 4	Mark Schem	е	Syllabus	Paper	
			GCE A/AS LEVEL – Octobe	r/November 2008	9702	02	
	(b)	(i)	as temperature rises), resistance of (thermistor) decreases		M1		
			or p.d. across 5 k Ω resistor / the	M1			
		I	.d. across 2000 Ω resistor / voltmeter reading increases			A1	[3]
		(ii) i	f R is the resistance of the parall				
			either $3.6 = (2 \times 6) / (2 + R)$ or	current in 2 k Ω resi	stor = 1.8 mA	C1	
			R = 1.33 kΩ	current in 5 k Ω res	istor = 0.48 mA	C1	
			$\frac{1}{1.33} = \frac{1}{5} + \frac{1}{T}$	current in thermisto	or = 1.32 mA	C1	
			<i>T</i> = 1.82 kΩ	<i>T</i> = 2.4 / 1.32 = 1.8	2 kΩ	A1	[4]
8	(a)	nucle per u (<i>allo</i> r	<u>eus</u> has constant probability of decay unit time / in a given time w 1 mark for 'cannot predict which <u>nucleus</u> will decay next')				[2]
	(b)	(i)	count rate / activity decreases			B1	[1]
		(ii) (count rate fluctuates / is not smo	oth		B1	[1]
	(c)	eithe or	er the (decay) curves are similar curves indicate same half-life	/ same		B1	[1]