MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/04
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9702	04

Section A

1 (a) (i) $F=G M m / R^{2}$
(ii) $F=m R \omega^{2} \quad$ B1
(iii) reaction force $=G M m / R^{2}-m R \omega^{2} \quad$ (allow e.c.f.) B1
(b) (i) either value of R in expression $R \omega^{2}$ varies
or $m R \omega^{2}$ no longer parallel to $G M m / R^{2} /$ normal to surface B1 becomes smaller as object approaches a pole / is zero at pole B1
(ii) 1. acceleration $=6.4 \times 10^{6} \times\left(2 \pi /\left\{8.6 \times 10^{4}\right\}\right)^{2}$
2. acceleration $=0$
(c) e.g. 'radius' of planet varies
density of planet not constant planet spinning nearby planets / stars (any sensible comments, 1 mark each, maximum 2)

2 (a) (Thermal) energy / heat required to convert unit mass of solid to liquid at its normal melting point / without any change in temperature
 (reference to 1 kg or to ice \rightarrow water scores max 1 mark)

(b) (i) To make allowance for heat gains from the atmosphere
(ii) e.g. constant rate of production of droplets from funnel constant mass of water collected per minute in beaker (any sensible suggestion, 1 mark)

B1
(iii) mass melted by heater in 5 minutes $=64.7-1 / 2 \times 16.6=56.4 \mathrm{~g} \quad \mathrm{C} 1$
$56.4 \times 10^{-3} \times L=18$
$L=320 \mathrm{~kJ} \mathrm{~kg}^{-1}$ A1
(Use of $m=64.7$, giving $L=278 \mathrm{~kJ} \mathrm{~kg}^{-1}$, scores max 1 mark use of $m=48.1$, giving $L=374 \mathrm{~kJ} \mathrm{~kg}^{-1}$, scores max 2 marks)

3 (a) acceleration / force (directly) proportional to displacement M1 and either directed towards fixed point or acceleration \& displacement in opposite directions

A1
(b) (i) maximum / minimum height / 8 mm above cloth $/ 14 \mathrm{~mm}$ below cloth B1
(ii) 1. $a=11 \mathrm{~mm} \quad \mathrm{~A} 1$
2. $\omega=2 \pi f$ C1
$=2 \pi \times 4.5$
$=28.3 \mathrm{rad} \mathrm{s}^{-1} \quad$ (do not allow 1 s.f.)
A1

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	$\mathbf{9 7 0 2}$	04

(c) (i) $v=\omega a$

C1

$$
\begin{aligned}
& =28.3 \times 11 \times 10^{-3} \\
& =0.31 \mathrm{~m} \mathrm{~s}^{-1} \quad(\text { do not allow } 1 \text { s.f. })
\end{aligned}
$$

A1
(ii) $v=\omega \sqrt{ }\left(a^{2}-y^{2}\right)$
$y=3 \mathrm{~mm}$
C1
$=28.3 \times 10^{-3} \sqrt{ }\left(11^{2}-3^{2}\right) \quad$ C1
$=0.30 \mathrm{~m} \mathrm{~s}^{-1}$ (allow 1 s.f.) A1

4 (a) $\Delta U=q+w$ (allow correct word equation)
B1
(b) either
kinetic energy constant because temperature constant
M1
potential energy constant because no intermolecular forces M1
so no change in internal energy
A1
or kinetic energy and potential energy both constant (M1)
so no change in internal energy
(A1)
reason for either constant k.e. or constant p.e. given (A1)
(A1)

5 (a) change/loss in kinetic energy = change/gain in electric potential energy
B1
$2 \times 1 / 2 m v^{2}=q^{2} / 4 \pi \varepsilon_{0} r$
$2 \times 1 / 2 \times 2 \times 1.67 \times 10^{-27} \times v^{2}$
$=\left(1.6 \times 10^{-19}\right)^{2} /\left(4 \pi \times 8.85 \times 10^{-12} \times 1.1 \times 10^{-14}\right)$
M1
$v=2.5 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
A0
(b) $p V=1 / 2 N m\left\langle c^{2}\right\rangle$ and $p V=N k T$

C1
$1 / 2 m\left\langle c^{2}\right\rangle=3 / 2 k T \quad$ (award 1 mark of first two if $\left\langle c^{2}\right\rangle$ not used)
C1
$1 / 2 \times 2 \times 1.67 \times 10^{-27} \times\left(2.5 \times 10^{6}\right)^{2}=3 / 2 \times 1.38 \times 10^{-23} \times T$ C1
$T=5 \times 10^{8} \mathrm{~K}$
A1
(c) e.g. this is very high temperature temperature found in stars (any sensible comment, 1 mark) (if $T<10^{6} \mathrm{~K}$, should comment that too low for fusion to occur) B1

6 (a) (i) either prevent loss of magnetic flux
or improves flux linkage with secondary B1
(ii) reduces eddy current (losses) B1
reduces losses of energy (in core)
B1
(b) (i) (induced) e.m.f. proportional to / equal to M1 rate of change of (magnetic) flux (linkage)

A1
changing flux in core

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9702	04

(any three, 1 each to max 3)
B3
$\begin{array}{ll}\text { (c) e.g. can change voltage easily / efficiently } \\ \text { high voltage transmission reduces power losses } \\ \text { (any two sensible suggestions, } 1 \text { each) } & \text { B2 }\end{array}$

7 (a) e.g. 'instantaneous' emission (of electrons)
threshold frequency below which no emission
(max) electron energy dependent on frequency
(max) electron energy not dependent on intensity
rate of emission (of electrons) depends on intensity
(any three sensible suggestions, 1 each) B3
$\begin{array}{lll}\text { (b) (i) 'packet' / quantum of energy } \\ \text { of electromagnetic energy / radiation } & \text { M1 } \\ & \text { A1 }\end{array}$
$\begin{array}{ll}\text { (ii) discrete wavelengths mean photons have particular energies } & \text { M1 } \\ \text { energy of photon determined by energy change of (orbital) electron } & \text { M1 }\end{array}$
so discrete energy levels AO
(c) (i) three energy changes shown correctly B1
arrows 'pointing' in correct direction B1
wavelengths correctly identified B1
(ii) chooses $\lambda=486 \mathrm{~nm} \quad \mathrm{C} 1$
$\Delta E=h c / \lambda \quad \mathrm{C} 1$
$=\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(4.86 \times 10^{-9}\right)$
$=4.09 \times 10^{-19} \mathrm{~J} \quad$ (allow 2 s.f.)

8 (a) region (of space)/ area where B1
a force is experienced by M1
current-carrying conductor / moving charge / permanent magnet A1
(b) (i) electric B1
(ii) gravitational B1
(iii) magnetic B1
(iv) magnetic B1

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9702	04

Section B

9 (a) IR has less attenuation (per unit length) B1
fewer (repeater) amplifiers / longer uninterrupted length B1
(b) either limited range B1(so) cells do not overlap (appreciably)B1or short wavelength(B1)
(c) large bandwidth / large information carrying capacity B1
different so that uplink signal not swamped by downlink B1
10 (a) (i) 1. inverting (amplifier) B1
2. gain of op-amp is very large / infinite B1
B12. gain of op-amp is very large / infinit
non-inverting input is at earth / 0 V
for amplifier not to saturate, P must be at about earth / OV B1
(ii) input resistance is very large B1
(so) current in $R_{1}=$ current in R_{2} B1
$I=V_{\text {IN }} / R_{1}$ B1
$I=-V_{\text {Out }} / R_{2}$ (minus sign can be in either of the equations) B1
hence gain $=V_{\text {OUT }} / V_{\text {IN }}=-R_{2} / R_{1}$ A0so convenient length aerial (on mobile phone)
so convenient length aerial (on mobile phone)
(b) (i) 1. feedback resistance $=33.3 \mathrm{k} \Omega \quad \mathrm{C} 1$
gain $(=33.3 / 5)=6.66 \quad$ C1
$V_{\text {OUT }}(=6.66 \times 1.2)=8.0 \mathrm{~V} \quad(+$ or - acceptable, allow 1 s.f. $) \quad$ A1
$\begin{array}{ll}\text { 2. feedback resistance }=8.33 \mathrm{k} \Omega & \mathrm{C} 1 \\ \left.V_{\text {OUT }}(=\{6.66 \times 1.2\} / 5)=2.0 \mathrm{~V} \text { (}+ \text { or - acceptable, allow } 1 \text { s.f. }\right) & \text { A1 }\end{array}$
(ii) (Increase in lamp-LDR distance gives) decrease in intensity M1
Feedback / LDR resistance increases M1
voltmeter reading increases / becomes more negative A1

11 (a) CT image: (thin) slice (through structure) B1
any further detail e.g. built up from many 'slices' / 3-D image B1
X-ray image: ‘shadow' image (of whole structure) / 2-D image
(b) X-ray image of slice taken from many different angles
these images are combined (and processed)
repeated for many different slices
to build up a 3-D image
3 -D image can be rotated
computer required to store and process huge quantity of data (any five, 1 each to max 5)

