UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper							
		GCE A LEVEL – October/November 2010	9702	23							
1	(a) allow 0.	(a) allow 0.05 mm → 0.15 mm									
	(b) allow 0.	(b) allow 0.25 s → 0.5 s									
	(c) allow 8	(c) allow 8 N → 12 N									
	ignore r	ignore number of significant figures									
2	crystalline:	atoms / ions / particles in a regular arrangement / lattice long range order / orderly pattern (lattice) repeats itself (1) long chain molecules / chains of monomers some cross-linking between chains / tangled chains (1) disordered arrangement of molecules / atoms / particles any ordering is short-range (1)	(1)	B1 B1							
	amorphous:		es (1)	B1							
	(three 'B' m	arks plus any other 2 marks)	(' /	B2	[5]						
3	adjust c.r.o. measure ler frequency =	prophone / (terminals of) loudspeaker to Y-plates of c.r.d to produce steady wave of 1 (or 2) cycles / wavelength and note time-base $b = 1 / \lambda b$ is measured as s cm ⁻¹ , unless otherwise stated)		B1 B1 M1 A1	[4]						
	(if statement is 'measure T , $f = 1/T$ then last two marks are lost)										
4	(a) accepta	able straight line drawn (touching every point)		B1	[1]						
	(b) the dist d is the		C1 A1	[2]							
	('d is no										
	. , . ,	meter: allow 1.5 ± 0.5 cm (accept one SF) ecf from (a)		A1	[1]						
	gra	dient = 4.76, \pm 0.1 with evidence that origin has not beed dient = g / 2 9.5 m s ⁻²	en used	C1 C1 A1	[3]						

-	i age 5			Walk Collette: Teachers Version Cyllabus				
				GCE A LEVEL – October/November 2010	9702	23		
5	(a)	(i)	Fig. 5	5.2		B1	[1]	
		(ii)	Fig. 5	5.3		B1	[1]	
	(b)	kin	etic energy increases from zero then decreases to zero					
	(c)	(i)	ΔE_{P}	= $mg\Delta h / mgh$ = $94 \times 10^{-3} \times 9.8 \times 2.6 \times 10^{-2}$ using $g = 10$ then -1 = 0.024 J	1	C1 A1	[0]	
		<i>(</i> 11)			40-202 4/4 /2		[2]	
		(11)	eithe	$r \ 0.024 = \frac{1}{2} k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2} kd^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2}kd^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})^2 $ or $\frac{1}{2}kd \times (2.6 \times 10^{-2})^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})^2 = \frac{1}{2}kd \times (2.6 \times 10^{-2})$	$\times 10^{-2})^2 - \frac{1}{2}kd^2$ $\times 10^{-2})^2$	C1 C1		
				a = 0.018 m = 1.8 cm = 1.8 cm		A1	[3]	
6	(a)	when two (or more) waves meet (at a point) (resultant) displacement is (vector) sum of individual displacements				B1 B1	[2]	
	(b)	(i)	590 >	x / D (if no formula given and substitution is incorrect $10^{-9} = (1.4 \times 10^{-3} \times x) / 2.6$	ct then 0/3)	C1 C1 A1	[3]	
		(ii)	1. 18	80° (allow π if rad stated)		A1	[1]	
			int	maximum, amplitude is 3.4 units and at minimum, 0.6 tensity \sim amplitude ² allow $I \sim a^2$ tio = 3.4 ² / 0.6 ²	3 units	C1 C1		
			= ;			A1	[3]	
7	(a)	(i)	path:	reasonable curve upwards between plates straight and at a tangent to the curve beyond the plates	tes	B1 B1	[2]	
		 (ii) 1. (F =) E.g 2. (t =) L/v (i) total momentum of a system remains constant or total momentum of a system before a collision equals total momentum after collision provided no external force acts on the system (do not accept 'conserved' but otherwise correct statement gets 1/2) 				B1	[1]	
						B1	[1]	
	(b)					M1 A1	[2]	
		(ii)	ii) $(\Delta p =) EqL/v$ allow ecf from (a)(ii)				[1]	
		(iii)	eithe	r charged particle is not an isolated system so law does not apply		M1 A1	[2]	
			or system is particle and 'plates' equal and opposite Δp on plates / so law applies					

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

	Page 4					Syllabus	Paper		
			GCE A LEV	EL – (October/November	2010	9702	23	
8	(a) (i)	(i) either $P = V^2 / R$		or	I = 1200 / 230 c $R = (230 \times 230) /$			C1	
		R = 230	0 ² / 1200	or	R = 230 / 5.22	.200		M1	
		= 44.1	Ω		= 44.1 Ω			A0	[2]
	(ii)	$R = \rho L$./A	5) /	(C1	
			.7 × 10 × 9.2 492Ω	× 2) /	$(\pi \times \{0.45 \times 10^{-3}\}^2)$			M1 A0	[2]
		- 0.4	+9232					AU	[4]
		(b) current = 230 /44.6						C1	
	po		230 /44.6) ² × 4	4.1				C1 A1	[3]
	= 1170 W (allow full credit for solution based on potential divider)							A1	[J]
	(c) e.g				heater / smaller p.o	d. across he	eater /	5 .4	
		•	ower loss in ca ecomes heate					B1 B1	[2]
	(any two sensible suggestions, 1 each, max 2)						Ο.	[-]	
9	(a) <u>nucleus</u> emits α -particles or β -particles and/or γ -radiation							B1	[0]
	to form a different / more stable nucleus							B1	[2]
	(b) (i)	fluctuati	ions in count ra	ate (r	not 'count rate is no	t constant')		B1	[1]
	(ii)	(ii) no effect			B1	[1]			
	(11)	(ii) no enect			ום	ניו			
	(iii)					B1			
		either or	α -particles st α -particles ar		•	gain electr	ons)	B1	[2]
			p						[—]

allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'