MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		e 2 Mark Scheme: Teachers' version GCE AS/A LEVEL – October/November 2010		Syllabus	Pape	r		
			GCE AS	A LEVEL – Octo	ber/November	2010	9702	41	
				ę	Section A				
1	(a) forc	ce per	unit mass	(ratio idea e	essential)			B1	[1]
	(b) gra) graph: correct curvature from $(R,1.0 g_S)$ & at least one other correct point							
	(c) (i)								
		<i>either</i> resultant field found by subtraction of the field strength or any other sensible comment so there is a point where it is zero (allow $F_E = -F_M$ for 2 marks)							[2]
	(ii)	(ii) $GM_{\rm E} / x^2 = GM_{\rm M} / (D - x)^2$ (6.0 × 10 ²⁴) / (7.4 × 10 ²²) = x^2 / (60 $R_{\rm E} - x$) ² $x = 54 R_{\rm E}$							[3]
	(iii)	(iii) graph: $g = 0$ at least $\frac{2}{3}$ distance to Moon g_E and g_M in opposite directions correct curvature (by eye) and $g_E > g_M$ at surface						B1 M1 A1	[3]
2	(a) (i)	no fo	rces (of attr	action or repulsic	on) between atom	ns / mole	cules / particle	s B1	[1]
	(ii)	 (ii) sum of kinetic and potential energy of atoms / molecules due to random motion 					M1 A1	[2]	
	(iii)	(rand	lom) kinetic	energy increases	s with temperatur	е		M1	
			otential ener ncrease in te	rgy emperature increa	ases internal ene	rgy)		A1	[2]
	(b) (i)	zero						A1	[1]
	(ii)	work	done = $p\Delta$	V				C1	
		$= 4.0 \times 10^5 \times 6 \times 10^{-4}$ = 240 J (ignore any sign)						A1	[2]
	(iii)								
	. ,	change work done / J heating / J increase in internal energy / J							
				. 0.40	000				

$\begin{array}{c} P \to Q \\ Q \to R \\ R \to P \end{array}$	+240 0 -840	-600 +720 +480	-360 +720 -360
		•	

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

B3 [3]

Page 3				Mark Scheme: Teachers' version Syllabu		Paper	
				GCE AS/A LEVEL – October/November 2010 9702		41	
3	(a)	(i)	reso	nance		B1	[1]
		(ii)	amp	itude 16mm and frequency 4.6Hz		A1	[1]
	(b)	(i)	a =	$(-)\omega^2 x \text{ and } \omega = 2\pi f$ $4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ 13.4 ms^{-2}		C1 C1 A1	[3]
		(ii)	F = =	<i>ma</i> 150 × 10 ⁻³ × 13.4		C1	
				2.0N		A1	[2]
	(c)			ys 'below' given line and never zero t 4.6 Hz (or slightly less) and flatter		M1 A1	[2]
4	(a)	cha	rge /	potential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V = 0	$Q / 4\pi \varepsilon_0 r$		B1	[1]
		(ii)	C = (so C	$Q/V = 4\pi\epsilon_0 r$ and $4\pi\epsilon_0$ is constant $\propto r$		M1 A0	[1]
	(c)	(i)	r = (6	$2 / 4\pi \varepsilon_0 r$ $5.8 \times 10^{-12}) / (4\pi \times 8.85 \times 10^{-12})$ $1 \times 10^{-2} m$		C1 C1 A1	[3]
		(ii)	Q =	$CV = 6.8 \times 10^{-12} \times 220$ = 1.5×10^{-9} C		A1	[1]
	(d)	(i)	V = 0 = 83	$Q/C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$ V		A1	[1]
		(ii)	eithe	er energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$ = 1.65 × 10 ⁻⁷ - 6.2 × 10 ⁻⁸		C1 C1	
			or	= $1.65 \times 10^{-7} - 6.2 \times 10^{-9}$ = $1.03 \times 10^{-7} \text{ J}$ energy = $\frac{1}{2}\text{ QV}$ $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = $1.03 \times 10^{-7} \text{ J}$	(C1) (C1) (A1)		[3]

	Pa	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2010	9702	41	
5	(a)	field into (the plane of) the paper				B1	[1]
	(b)		² / r = = (20	e to magnetic field <u>provides</u> the centripetal force Bqv 0 × 1.66 × 10 ⁻²⁷ × 1.40 × 10 ⁵) / (1.6 × 10 ⁻¹⁹ × 6.4 × 10 ⁻⁷ 454 T	²)	B1 C1 B1 A0	[3]
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$		C1	
		()		B = 0.499 T		A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(ii)	e.m.	in core is changing f. / current (induced) <u>in core</u> ced current in core causes heating		B1 B1 B1	[3]
	(b)	(i)		value of the direct current producing same (mean) pov resistor	ver / heating	M1 A1	[2]
		(ii)	•	er in primary = power in secondary $P = V_S I_S$		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]
		(ii)	e.g.	photoelectric effect		B1	[1]
	(b)	(i)	6			A1	[1]
		(ii)	$\lambda = I$	nge in energy = 4.57 × 10^{-19} J hc / E .63 × 10^{-34} × 3.0 × 10^{8}) / (4.57 × 10^{-19})		C1	
			= (0. = 4.4	$4 \times 10^{-7} \mathrm{m}$		A1	[2]
8	(a)		-	of a heavy nucleus (<i>not atom/nuclide</i>) (lighter) nuclei of <u>approximately same mass</u>		M1 A1	[2]
	(b)	¹ n 42He 73Li		(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)			particles have kinetic energy	in rods /	B1	
		lose	e kine	particles in the control rods is short / particles stopped tic energy in rods nergy of particles converted to thermal energy	1111005/	B1 B1	[3]

	Page 5			5 Mark Scheme: Teachers' version Syllabus GCE AS/A LEVEL – October/November 2010 9702		Paper 41	
<u> </u>		Section B					
9	(a)	(i)	non-	inverting (amplifier)		B1	[1]
		(ii)	(G =) 1 + R_2 / R_1		B1	[1]
	(b)	(i)	•	= 1 + 100 / 820 ut = 17 mV		C1 A1	[2]
		(ii)	(<i>R</i> ₂ / (1 +	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii), (b)(i) and (b)(ii))	mark in (b)(ii)	A1	[1]
10	(a)	(i)	dens	sity × <u>speed of wave</u> (in the medium)		B1	[1]
		(ii)	ρ = =	(7.0 × 10 ⁶) / 4100 1700 kg m ^{−3}		A1	[1]
	(b)	(i)	I = I	$T + I_R$		B1	[1]
		(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	[2]
			2. α	≈ 1		A1	[1]
	(c)	eith or		very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body		M1 M1 (M1) (M1) (A1)	[3]
11	(a)	(i)	unwa	anted random power / signal / energy		B1	[1]
		(ii)	loss	of (signal) power / energy		B1	[1]
	(b)	(i)	eithe	er signal-to-noise ratio at mic. = 10 lg (P ₂ / P ₁) = 10 lg ({2.9 × 10 ⁻⁶ } / {	3.4 × 10 ^{−9} })	C1	
				= 29 dB maximum length = $(29 - 24) / 12$ = 0.42 km = 420 m	, , , , , , , , , , , , , , , , , , ,	A1 C1 A1	[4]
			or	signal-to-noise ratio at receiver = 10 lg (P_2 / P_1) at receiver, 24 = 10 lg($P / \{3.4 \times 10^{-9}\}$) $P = 8.54 \times 10^{-7}$ W		(C1)	
				power loss in cables = $10 \log(\{2.9 \times 10^{-6}\} / \{8.54 \times 1 = 5.3 dB$	0 ⁻⁷ })	(A1) (C1)	
				length = 5.3 / 12 km = 440 m		(A1)	

e 6	Ма	ark Scheme: Teachers' version	Syllabus	Paper	,
G	CE AS	/A LEVEL – October/November 2010	9702	41	
coupled to	the m	nicrophone		M1 A1	[2]
satellite receiv signal amplifie at a different (different frequ e.g. of frequer	es gre d and carrier encies ncies u	atly attenuated signal transmitted <u>back to Earth</u>) frequency prevent swamping of uplink signal sed (6/4 GHz, 14/11 GHz, 30/20 GHz)	(1) (1) (1) (1)	B1 B1 B2	[4]
advantage: disadvantage:	e.g.	because orbits are much lower whole Earth may be covered in several orbits / with network <i>either</i> must be tracked <i>or</i> limited use in any one orbit		M1 A1 (M1) (A1) M1	[4]
	G ii) use an an coupled to (<i>repeater</i> carrier wave) satellite receive signal amplifie at a different (different frequer <i>two B1 marks</i> advantage:	GCE AS GCE AS FILL FILL GCE AS FILL FILL FILL GCE AS FILL FILL FILL GCE AS FILL FILL FILL GCE AS FILL FILL FILL FILL GCE AS FILL	GCE AS/A LEVEL – October/November 2010 ii) use an amplifier coupled to the microphone (repeater amplifiers scores no mark) carrier wave) transmitted from Earth to satellite satellite receives greatly attenuated signal signal amplified and transmitted back to Earth at a different (carrier) frequency different frequencies prevent swamping of uplink signal e.g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) two B1 marks plus any two other for additional physics) advantage: e.g. much shorter time delay because orbits are much lower e.g. whole Earth may be covered in several orbits / with network disadvantage: e.g. either must be tracked or limited use in any one orbit	GCE AS/A LEVEL – October/November 2010 9702 ii) use an amplifier coupled to the microphone (repeater amplifiers scores no mark) (1) carrier wave) transmitted from Earth to satellite (1) satellite receives greatly attenuated signal (1) signal amplified and transmitted back to Earth at a different (carrier) frequency different frequencies prevent swamping of uplink signal (1) e.g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) (1) two B1 marks plus any two other for additional physics) (1) advantage: e.g. much shorter time delay because orbits are much lower e.g. whole Earth may be covered in several orbits / with network (1) disadvantage: e.g. either must be tracked or limited use in any one orbit (1)	GCE AS/A LEVEL - October/November 2010970241ii) use an amplifier coupled to the microphone (repeater amplifiers scores no mark)M1 A1icarrier wave) transmitted from Earth to satellite statellite receives greatly attenuated signal at a different (carrier) frequency different frequencies prevent swamping of uplink signal (1) e.g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) two B1 marks plus any two other for additional physics)B1 B1 B2advantage: e.g. much shorter time delay in several orbits / with network (A1)M1 (A1)