MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

Section A

1 (a) (i) rate of change of angle / angular displacement
M1 swept out by radius A1
(ii) $\omega \times T=2 \pi$

B1
(b) centripetal force is provided by the gravitational force

B1
either $m r(2 \pi / T)^{2}=G M m / r^{2}$ or $m r \omega^{2}=G M m / r^{2} \quad$ M1
$r^{3} \times 4 \pi^{2}=G M \times T^{2} \quad$ A1
$G M / 4 \pi^{2}$ is a constant (c) A1
$T^{2}=c r^{3}$ A0
(c) (i) either $T^{2}=(45 / 1.08)^{3} \times 0.615^{2}$ or $T^{2}=0.30 \times 45^{3}$
$T=165$ years
A1
(ii) speed $=\left(2 \pi \times 1.08 \times 10^{8}\right) /(0.615 \times 365 \times 24 \times 3600)$ C1

$$
=35 \mathrm{~km} \mathrm{~s}^{-1}
$$

2 (a) atoms / molecules / particles behave as elastic (identical) spheres volume of atoms / molecules negligible compared to volume of containing vessel time of collision negligible to time between collisions no forces of attraction or repulsion between atoms / molecules
atoms / molecules / particles are in (continuous) random motion
(any four, 1 each)
(b) $p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle$ and $p V=n R T$ or $p V=N k T$
$\left.\frac{1}{3} N m<c^{2}\right\rangle=n R T$ or $=N k T$ and $\left.\left\langle E_{k}\right\rangle=1 / 2 m<c^{2}\right\rangle$
$n=N / N_{\mathrm{A}}$ or $k=R / N_{\mathrm{A}}$ B1
$<E_{\mathrm{K}}>=\frac{3}{2} \times R / N_{\mathrm{A}} \times T$ A0
(c) (i) reaction represents either build-up of nucleus from light nuclei
or build-up of heavy nucleus from nuclei
so fusion reaction
A1
(ii) proton and deuterium nucleus will have equal kinetic energies

B1
$1.2 \times 10^{-14}=\frac{3}{2} \times 8.31 /\left(6.02 \times 10^{23}\right) \times T \quad$ C1
$T=5.8 \times 10^{8} \mathrm{~K}$ A1
(use of $E=2.4 \times 10^{-14}$ giving $1.16 \times 10^{9} \mathrm{~K}$ scores 1 mark)
(iii) either inter-molecular / atomic / nuclear forces exist or proton and deuterium nucleus are positively charged / repel

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

3 (a) (i) 8.0 cm
A1 [1]
(ii) $\begin{array}{ll}2 \pi f=220 \\ f=35\end{array} \quad$ (condone unit) C 1
A 1
(iii) line drawn mid-way between AB and $\mathrm{CD} \quad$ (allow $\pm 2 \mathrm{~mm}$)

$$
\text { (iv) } \begin{aligned}
v & =\omega a \\
& =220 \times 4.0
\end{aligned}
$$ C1

$$
=880 \mathrm{~cm} \mathrm{~s}^{-1}
$$

(b) (i) 1. line drawn 3 cm above AB (allow $\pm 2 \mathrm{~mm}$)

B1 [1]
2. arrow pointing upwards

B1 [1]
(ii) 1. line drawn 3 cm above AB (allow $\pm 2 \mathrm{~mm}$)

B1 [1]
2. arrow pointing downwards

B1 [1]
(iii) $v=\omega \sqrt{ }\left(a^{2}-x^{2}\right)$

$$
\begin{aligned}
=220 \times \sqrt{ }\left(4.0^{2}-2.0^{2}\right) & \mathrm{C} 1 \\
& 760 \mathrm{~cm} \mathrm{~s}^{-1} \\
\text { (incorrect value for } x, 0 / 2 \text { marks) } & \text { A1 }
\end{aligned}
$$

4 (a) (i) work done moving unit positive charge
from infinity to the point
A1
(ii) charge / potential (difference) (ratio must be clear)
(b) (i) capacitance $=\left(2.7 \times 10^{-6}\right) /\left(150 \times 10^{3}\right)$
(allow any appropriate values)
capacitance $=1.8 \times 10^{-11}$
(allow 1.8 ± 0.05)
A1
(ii) either energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $Q=C V$
energy $=1 / 2 \times 1.8 \times 10^{-11} \times\left(150 \times 10^{3}\right)^{2}$ or $\frac{1}{1 / 2} \times 2.7 \times 10^{-6} \times 150 \times 10^{3}$

$$
=0.20 \mathrm{~J}
$$

(c) either since energy $\propto V^{2}$, capacitor has $(1 / 2)^{2}$ of its energy left or full formula treatment

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

5 (a) magnetic flux $=B A$

$$
\begin{aligned}
& =89 \times 10^{-3} \times 5.0 \times 10^{-2} \times 2.4 \times 10^{-2} \\
& =1.07 \times 10^{-4} \mathrm{~Wb}
\end{aligned}
$$

(b) (i) e.m.f. $=\Delta \phi / \Delta t$ C1
(for $\Delta \phi=1.07 \times 10^{-4} \mathrm{~Wb}$), $\Delta t=2.4 \times 10^{-2} / 1.8=1.33 \times 10^{-2} \mathrm{~s}$
C1
e.m.f. $=\left(1.07 \times 10^{-4}\right) /\left(1.33 \times 10^{-2}\right)$

$$
=8.0 \times 10^{-3} \mathrm{~V}
$$

A1
(ii) current $=8.0 \times 10^{-3} / 0.12 \quad \mathrm{M} 1$

$$
\approx 70 \mathrm{~mA}
$$

A0
(c) force on wire $=B I L$
$=89 \times 10^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$
C1
$\approx 3 \times 10^{-4}(\mathrm{~N})$ M1
suitable comment e.g. this force is too / very small (to be felt)
A1

6 (a) power / heating depends on I^{2}
so independent of current direction A1
(b) either maximum power $=I_{0}{ }^{2} R$ or average power $=I_{\text {RMs }}{ }^{2} R$ M1
$I_{0}=\sqrt{ } 2 \times I_{\mathrm{RMS}}$ M1
maximum power $=2 \times$ average power ratio $=0.5$

7 (a) force due to E-field is equal and opposite to force due to B-field

$$
E q=B q v
$$

$v=E / B$
(b) either charge and mass are not involved in the equation in (a)
or $\quad F_{\mathrm{E}}$ and F_{B} are both doubled
or E, B and v do not change
so no deviation

8 (a) minimum frequency for electron to be emitted (from surface)
of electromagnetic radiation / light / photons
(b) $E=h c / \lambda$ or $E=h f$ and $c=f \lambda$
either threshold wavelength $=\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(5.8 \times 10^{-19}\right)$

$$
=340 \mathrm{~nm}
$$

or energy of 340 nm photon $=4.4 \times 10^{-19} \mathrm{~J}$
or threshold frequency $=8.7 \times 10^{14} \mathrm{~Hz}$
or $450 \mathrm{~nm} \rightarrow 6.7 \times 10^{14} \mathrm{~Hz}$
A1
appropriate comment comparing wavelengths / energies / frequencies B1
so no effect on photo-electric current

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

Section B

9 (a) (i) edges can be (clearly) distinguished
(ii) e.g. size of X -ray source / anode / target / aperture scattering of X-ray beam pixel size
(any two, 1 each)
further detail e.g. use of lead grid
B1
(b) X-ray image involves a single exposure B1

CT scan: exposure of a slice from many different angles
M1
repeated for different slices A1
CT scan involves a (much) greater exposure
B1

10 (a) e.g. infinite input impedance / resistance
zero output impedance / resistance
infinite gain
infinite bandwidth
infinite slew rate
(any three, 1 each)
B3
(b) (i) with switch open, V^{-}is less (positive) than $V^{+} \quad$ M1
output is positive
A1
with switch closed, V^{-}is more (positive) than V^{+}so output is negative A1 (allow similar scheme if V^{-}more positive than V^{+}treated first)
(ii) 1. diodes connected correctly between output and earth
M1
2. green identified correctly
A1
(do not allow this mark if not argued in (i))

11 (a) (i) $I / I_{0}=\exp (-1.5 \times 2.9)$
C1
$=0.013$
A1
(ii) $I / I_{0}=\exp (-4.6 \times 0.95)$
$=0.013$
A1
$\begin{array}{ll}\text { (b) attenuation (coefficients) in muscle and in fat are similar } & \text { B1 } \\ \text { attenuation (coefficients) in bone and muscle / fat are different } & \text { B1 } \\ \text { contrast depends on difference in attenuation } & \text { B1 }\end{array}$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9702	43

12 (a) (i) 1. signal has same variation (with time) as the data B1
2. consists of (a series of) 'highs' and 'lows' B1
either analogue is continuously variable (between limits)
or digital has no intermediate values
B1
(ii) e.g. can be regenerated / noise can be eliminated
extra data can be added to check / correct transmitted signal
(any two reasonable suggestions, 1 each)

B2
(b) (i) analogue signal is sampled at (regular time) intervals B1 sampled signal is converted into a binary number B1
(ii) one channel is required for each bit (of the digital number)

