MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	21

1 (a) density = mass / volume
B1 [1]
(b) density of liquids and solids same order as spacing similar / to about $2 \times$
B1 density of gases much less as spacing much more or density of gases much lower hence spacing much more
(c) (i) density $=68 /\left[50 \times 600 \times 900 \times 10^{-9}\right]$

C1
$=2520$ (allow 2500) $\mathrm{kg} \mathrm{m}^{-3}$
A1
(ii) $P=F / A$

C1
$=68 \times 9.81 /\left[50 \times 600 \times 10^{-6}\right]$
C1
$=2.2 \times 10^{4} \mathrm{~Pa}$
A1

2 (a) torque is the product of one of the forces and the distance between forces the perpendicular distance between the forces
(b) (i) torque $=8 \times 1.5=12 \mathrm{Nm}$
(ii) there is a resultant torque / sum of the moments is not zero (the rod rotates) and is not in equilibrium
(c) (i) $\mathrm{B} \times 1.2=2.4 \times 0.45$
$B=0.9(0) \mathrm{N}$
(ii) $\mathrm{A}=2.4-0.9=1.5 \mathrm{~N} /$ moments calculation

3 (a) (i) horizontal velocity $=15 \cos 60^{\circ}=7.5 \mathrm{~ms}^{-1}$
(ii) vertical velocity $=15 \sin 60^{\circ}=13 \mathrm{~m} \mathrm{~s}^{-1}$
(b) (i) $v^{2}=u^{2}+2 a s$
$s=(13)^{2} /(2 \times 9.81)=8.6(1) \mathrm{m}$
using $g=10$ then max. 1
(ii) $t=13 / 9.81=1.326 \mathrm{~s}$ or $t=9.95 / 7.5=1.327 \mathrm{~s}$

> A1
(iii) $\begin{aligned} \text { velocity } & =6.15 / 1.33 \\ & =4.6 \mathrm{~ms}^{-1}\end{aligned}$ M1

$$
=4.6 \mathrm{~m} \mathrm{~s}^{-1}
$$

(c) (i) change in momentum $\begin{array}{rlrl} & =60 \times 10^{-3}[-4.6-7.5] & & \mathrm{C} 1 \\ & =(-) 0.73 \mathrm{Ns} & \mathrm{A} 1\end{array}$
(ii) final velocity / kinetic energy is less after the collision or
relative speed of separation < relative speed of approach A0

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	21

4 (a) electrical potential energy (stored) when charge moved and gravitational potential energy (stored) when mass moved
due to work done in electric field and work done in gravitational field
B1
(b) work done $=$ force \times distance moved (in direction of force) and force $=m g$
$m g \times h$ or $m g \times \Delta h$
(c) (i) $0.1 \times m g h=1 / 2 m v^{2}$

B1
$0.1 \times m \times 9.81 \times 120=0.5 \times m \times v^{2}$
B1
$v=15.3 \mathrm{~m} \mathrm{~s}^{-1}$
A0
(ii) $\begin{aligned} & P=0.5 m v^{2} / t \\ & m / t=110 \times 10^{3} /\left[0.25 \times 0.5 \times(15.3)^{2}\right] \\ &=3740 \mathrm{kgs}^{-1}\end{aligned}$

C1

$$
=3740 \mathrm{~kg} \mathrm{~s}^{-1}
$$

C1
A1

5 (a) ohm = volt / ampere
(b) $\rho=R A / l$ or unit is $\Omega \mathrm{m}$
units: $\vee A^{-1} \mathrm{~m}^{2} \mathrm{~m}^{-1}=\mathrm{NmCl}^{-1} \mathrm{~A}^{-1} \mathrm{~m}^{2} \mathrm{~m}^{-1}$ C1

$$
\begin{aligned}
& =\mathrm{kgm}^{2} \mathrm{~s}^{-2} A^{-1} \mathrm{~s}^{-1} A^{-1} m^{2} \mathrm{~m}^{-1} \\
& =\mathrm{kgm}^{3} \mathrm{~s}^{-3} A^{-2}
\end{aligned}
$$

A1
(c) (i) $\rho=\left[3.4 \times 1.3 \times 10^{-7}\right] / 0.9$

$$
=4.9 \times 10^{-7}(\Omega \mathrm{~m})
$$

A1
(ii) $\begin{array}{ll}\max =2 .(0) \vee & \mathrm{A} 1 \\ \min =2 \times(3.4 / 1503.4)=4.5 \times 10^{-3} \mathrm{~V} & \mathrm{~A} 1\end{array}$

$$
\min =2 \times(3.4 / 1503.4)=4.5 \times 10^{-3} V
$$

(iii) $P=V^{2} / R$ or $P=V I$ and $V=I R \quad$ C1

$$
\begin{aligned}
& =(2)^{2} / 3.4 \\
& =1.18 \text { (allow 1.2) } \mathrm{W}
\end{aligned}
$$

(d) (i) power in Q is zero when $R=0$
(ii) power in $\mathrm{Q}=0$ / tends to zero as $R=$ infinity

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	21

6 (a) extension is proportional to force (for small extensions)
B1 [1]
(b) (i) point beyond which (the spring) does not return to its original length when the
load is removed \quad [1]
(ii) gradient of graph $=80 \mathrm{Nm}^{-1}$
(iii) work done is area under graph $/ 1 / 2 F x / 1 / 2 k x^{2}$

C1
$=0.5 \times 6.4 \times 0.08=0.256$ (allow 0.26) J
A1
(c) (i) extension $=0.08+0.04=0.12 \mathrm{~m}$
(ii) spring constant $=6.4 / 0.12=53.3 \mathrm{Nm}^{-1}$

7 (a) nuclei with the same number of protons
B1 and a different number of neutrons B1
(b) (i) (mass + energy) (taken together) is conserved momentum is conserved
one point required max. 1
(ii) $\begin{array}{ll}a=1 \text { and } b=0 \\ x & =56\end{array}$

B1
$y=92$
B1
(c) $\begin{aligned} & \text { proton number }=90 \\ & \text { nucleon number }=235\end{aligned}$

B1
nucleon number $=235$ B1

